Flood Susceptibility Analysis on Hexagonal Grid Meshes
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o1 | Quantization of sample points & predictor variables

- Configuration: Icosahedral Snyder Equal Area
Aperture 3 Hexagonal Grid (ISEA3H; Fig.3).

- Modeling resolution: levels 19, 21, 23.

- Datasets: DTM, NDVI, landcover, geology types, soil
types, mean snow and ice, distance to waterbody.
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IN southern New Brunswick, seasonal flooding

takes place around St. John River. Flooding can
cause serious damage and hazard (Fig.1). Flood

- . N L/l - Quantization: nearest / bilinear interpolation.
prediction can help to make response strategies.! i _ R library: dggridR®. _U
' FLOOD modeling was studied 7/ (2 Computation of meteorology variables <

by machine learning methods. - Variable classes: precipitation, temperature, degree days, T
= Recently, hydrological modeling on s o , , -
Fig. 1 Flooding B S em—— Fig. 3 ISEA3H DGGS. - Interpolatlor.mz In\{erse Distance Welghted. :[
scene in NB, 2018lu 1€Xagonal g - Representative distance: hexagonal rings. c
attention among researchers. Discrete Global Grid Systems 3 Topographical & hydrological parameters C
(DGGS) was increasingly adopted in integrating multi- - -Terrain-based: slope, aspect, roughness, curvature, TRI, TPI. C
sources data and solving real-world problems!?!, - Flow-based: flow direction, upslope area, SPI, TWI. -

- Flow direction algorithm: D6 algorithm!4l. C
THIS project aimed to model flood susceptibility in a - Depression filling method: Priority-Flood algorithm[!. G
hexagonal DGGS, with 28 predictors in four categories : (& Random forest modeling, evaluation & prediction -
geomorphology, hydrography, meteorology, and terrain- - Machine learning model: random forest.
derived variables. The study area is around 27705 km?, - Data split: 2795 sample points,70% training, 30% testing.
coving partial drainage basin of the St. John River (Fig.2). - Evaluation: accuracy (ACC), F-score, area under ROC (AUC).

- Tools: python, ArcGIS pro, R-ArcGIS Bridge (VSURF!e]).

Fig. 2 Study area in New Brunswick, rendered by elevations on hexagonal meshes.
Quantization results of representative predictors in one watershed are illustrated.
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CELL-BASED flooding events were predicted , . CIVIPFVYRIANT VARADLED

RESULTS showed that DTM was the most important

variable, generally followed by hydro-geomorphological
slight differences in the visualized flooding variables distance-to-waterbody (NHN), landcover, and
extent in various scenarios, predicted flooding geology types (Table 1). Meteorology variables precipitation
sites were clustered around St. John River and . | o and total snow showed high importance when being added.
its branches. Y

At three resolution levels. Fig.4 visualized the .
predicted flooding sites. Although there were

MODELS performed well according to three evaluation

indicators, where ACC, AUC, and F-score were higher than
0.9 across all resolution levels (Table 1). Generally, models

Fig. 4 Prediction of the flood extent in ISEA3H
DGGS at levels a. 19, b. 21, and c. 23. ] Flooded

C. IANCAVVAYD had better performance at finer resolutions with all
= This project modeled flood susceptibility in DGGS. predictors included in the training process.
= DGGS helped to integrate multi-source data and Table 1. Summary of selected predictors and model performance at levels 19, 21, and 23.
conduct cell-based predictions. Level |Important variables* ACC AUC F
" DTM was the most important predictor variable. 19 | dtm, ts, precip, nhn, lc, rgh, sd50, tri, msi 0.920 | 0.920 | 0.917
" Meteorology variables showed high importance. 21 |dtm, ts, nhn, precip, geo, sd50, slp, r10 0.926 | 0.925 | 0.922
* Model performance was better at finer resolutions. 23 | dtm, ts, nhn, precip, Ic, rgh 0942 | 0942 | 0.938

" Flood susceptibility was predicted and visualized.

*dtm = elevation; ts = total snow, precip = precipitation, nhn = distance to waterbody, Ic = landcover, rgh = roughness, sd50 =
snow depth > 50cm, tri = terrain roughness index, msi = mean snow and ice, slp = slope, geo = geology, r10 = rainfall > 10 mm
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