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We develop a spatially explicit methane inventory for Alberta’s upstream oil and gas Accepted 16 December 2025

sector using the rHEALPix Discrete Global Grid System. The objective is to demon-
strate an equal-area, hierarchy-aware framework that assigns facility-reported emis- KEYWORDS

sions to native locations and supports multi-scale analysis and reporting. We Discrete global grid systems;
compile monthly facility activity from Petrinex for 2020 to 2023, geolocate facilities ~ "HEALPix; methane

using the Oil and Gas Infrastructure Mapping database, calculate methane emissions emissions; petroleum and
from venting, fuel use, and flaring using province-standard factors, and bin results to ~ 13tural gas; spatial explicit
rHEALPix cells before exact aggregation to coarser levels. Our analysis revealed inventory

persistent high-emission hotspots, with 5% of grid cells accounting for 34% of

total annual methane emissions. The equal-area lattice enables fair intensity com-

parisons across latitude, stable hotspot tracking over time, and mass-conserving

aggregation that maintains consistent totals across resolutions. Practical implica-

tions include a standard spatial fabric that integrates facility reports, satellites, and

ground sensors, provides persistent cell buckets for facility and asset management,

enables accurate intensity comparisons across space and time with quantitative

spatial resolution, preserves spatial integrity in visualization, supports consistent

mass conserving aggregation at any scale with multiple granularities for analysis

and reporting, allows precise hotspot tracking and trend monitoring, and informs

targeted monitoring and survey design.

1. Introduction

Greenhouse gases (GHGs) are critical drivers of climate change, trapping heat in the atmosphere and
altering global climate systems (Masson-Delmotte et al. 2023). While CO, is the most prevalent anthro-
pogenic GHG, methane is especially consequential due to its high warming potential (Myhre et al. 2013;
Masson-Delmotte et al. 2023). Over 20 years, methane warms nearly 84 times more than CO,, making its
mitigation urgent despite a shorter atmospheric lifetime (Myhre et al. 2013; Masson-Delmotte et al. 2023).
In Canada, the oil and gas sector is the largest source of anthropogenic methane emissions, especially in
Alberta, British Columbia, and Saskatchewan. According to the Canada Energy Regulator (CER), Alberta
alone accounts for 84% of Canada’s crude oil and 61% of natural gas production, making it central to
mitigation efforts (Canada Energy Regulator 2023). National inventories, including the National Inventory
Report (NIR) and the Greenhouse Gas Reporting Programme (GHGRP), provide structured estimates.
While national reporting frameworks such as the National Inventory Report (NIR) and the Greenhouse
Gas Reporting Programme (GHGRP) provide consistent national and provincial totals and facility-level
submissions, many applications, from atmospheric inversion to targeted inspection, require spatially
explicit representations that these national totals do not supply.

To meet this need, gridded methane inventories have become foundational inputs for research and
policy. Widely used global and continental products, for example, the Emissions Database for Global
Atmospheric Research (EDGAR; Crippa et al. 2023), the Global Fuel Exploitation Inventory (GFEL;
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Scarpelli et al. 2020; Scarpelli, Jacob, Grossman, et al. 2022; Scarpelli et al. 2025), the Greenhouse Gas
and Air Pollution Interactions and Synergies model (GAINS; Hoéglund-Isaksson et al. 2020), and the
Copernicus Atmosphere Monitoring Service Regional Emissions Inventory (CAMS-REG; Kuenen
et al. 2022), provide spatialized emissions that support atmospheric inversions, help interpret
observation-model discrepancies, and inform mitigation planning. There are also national and local
gridded inventories, for instance, the United States (Maasakkers et al. 2016; Maasakkers et al. 2023),
Canada (Scarpelli, Jacob, Moran, et al. 2022), Mexico (Scarpelli et al. 2020), and basin- or state-scale
products for California (Jeong and Millstein 2014), the Barnett Shale (Lyon et al. 2015), the Permian
Basin (Zhang et al. 2020; Omara et al. 2023), and New York State (Loman and Murray 2025).
Section 2.1.1 provides a concise overview of these inventories and their typical use in atmospheric
analysis and mitigation planning.

However, two persistent limitations affect their interpretability and reuse. First, most products are
distributed on latitude-longitude graticule grids whose cell areas vary with latitude, complicating intensity
mapping and scale-consistent aggregation. Second, spatialization typically relies on proxies (e.g. land use
or infrastructure density) to allocate activity data, making results sensitive to proxy choice and underlying
assumptions. These issues can propagate into downstream modelling and decision support, especially in
high-latitude regions and in heterogeneous production basins. We provide a detailed description of these
methodological and gridding limitations in Section 2.1.3.

This study demonstrates the application of Discrete Global Grid Systems (DGGS) to construct a
spatially explicit methane emission inventory for Alberta’s upstream oil and gas sector, replacing tradi-
tional graticule-based grids. DGGS partitions the Earth's surface into equal-area cells, ensuring consistent
spatial resolution (Goodchild 2018; Hojati et al. 2022). A key advantage is its ability to eliminate spatial
bias, enabling accurate emission analyses and direct inter-cell comparisons (Li and Stefanakis 2020).
DGGS also avoids visual deformation of the content, regardless of how the data is presented or the
projection used to display it (Li and Stefanakis 2020; Li et al. 2024). Its hierarchical structure allows
seamless aggregation across resolutions, supporting multi-scale reporting. This study uses the rearranged
Hierarchical Equal Area isoLatitude Pixelization (rHEALPix) DGGS, as detailed in Section 2.2. It also
avoids disaggregation methods that may misplace emissions by assigning methane data directly at native
resolution, preserving spatial accuracy and minimising allocation errors. The integration of DGGS into
GHG monitoring workflows aligns with the vision of a Digital Earth, where global geospatial infrastruc-
tures are standardised, scalable, and interoperable. A DGGS-enabled inventory system can facilitate
seamless integration of bottom-up emissions data with satellite observations, inversion models, and
decision-support tools at global and regional scales.

Despite the centrality of gridded inventories in methane research, there remains a gap in regional,
facility-linked inventories built natively on an equal-area, hierarchical grid and demonstrating mass-
conserving roll-ups across resolutions. Existing regional products rarely combine all three elements,
including equal-area comparability, explicit multi-scale consistency, and direct assignment from
facility-reported activity without proxy redistribution. This paper contributes a DGGS-based, equal-
area methane inventory for Alberta’s upstream oil and gas sector that (i) assigns facility-reported
emissions at native locations to rHEALPix cells; (ii) provides exact, multi-scale aggregation via the
hierarchy, preserving mass across resolutions; (iii) quantifies hotspot intensity and persistence using
scale-aware summaries; and (iv) enables cross-framework evaluation by converting an existing
graticule-based inventory to rHEALPix to diagnose where methodological allocation differences
emerge at finer scales. Beyond the case study, we position DGGS as a standardised spatial substrate
that can be aggregated exactly to other analysis grids, facilitating integration with inversion systems and
decision-support tools.

The remainder of the paper is organised as follows. Section 2 reviews related work on gridded
methane inventories and summarises rHEALPix DGGS properties relevant to emissions analysis.
Section 3 describes the data and methods, including facility-level calculation, DGGS assignment,
aggregation, and visualisation. Section 4 presents the results for Alberta, Section 5 discusses the key
findings and implications for methane monitoring and policy applications, and Section 6 concludes
the study.
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2. Background and related work
2.1 Gridded methane inventories

2.1.1 Overview of existing gridded methane inventories

Extensive efforts have been made to develop gridded methane emission inventories at global, national,
and local scales to improve spatially explicit estimates. Several global and continental-scale inventories
exist, such as EDGAR, GFEI, GAINS, and CAMS-REG (Ho6glund-Isaksson et al. 2020; Scarpelli et al.
2020; Kuenen et al. 2022; Scarpelli, Jacob, Grossman, et al. 2022; Crippa et al. 2023; Scarpelli et al.
2025). EDGAR applies IPCC guidelines and spatial proxies, such as land-use and industrial activity
data, to allocate national totals to a 0.1 °x 0.1 ° grid (Crippa et al. 2024). GFEI focuses on fossil fuel
exploitation and refines its resolution by incorporating national reports and facility-level production
data (Scarpelli et al. 2020; Scarpelli, Jacob, Grossman, et al. 2022; Scarpelli et al. 2025). GAINS
provides consistent, policy-oriented emission estimates for all primary greenhouse gases based on
integrated energy, agricultural, and waste sector modelling (Hoglund-Isaksson et al. 2020). CAMS-
REG offers a gridded inventory for Europe, combining reported national totals with updated spatial
proxies and sectoral refinements to produce annual emissions at 0.1 ° resolution (Kuenen et al. 2022).
At the national scale, inventories have been mainly developed by disaggregating totals using spatial
proxies. For the U.S., Maasakkers et al. (2023) produced inventories based on Environmental
Protection Agency (EPA) facility data, while Omara et al. (2024) introduced a probabilistic model
that integrates empirical measurements to reduce uncertainties. In Canada, Scarpelli, Jacob, Moran,
et al. (2022) mapped 2018 NIR methane emissions onto a 0.1° x 0.1° grid, refining oil and gas sector
estimates with facility-level data from the GHGRP. Other national-scale gridded inventories exist for
Mexico (Scarpelli et al. 2020), Australia (Wang and Bentley 2002), Switzerland (Hiller et al. 2014), and
China (Peng et al. 2016; Sheng et al. 2019). Local gridded methane inventories have been developed for
New York State, California, the Barnett Shale, and the Permian Basin. For New York State, Loman and
Murray, 2025 developed the Gridded New York State inventory at 100 m resolution with monthly
time steps across 82 source categories. They reported state totals substantially higher than the U.S.
Environmental Protection Agency (EPA) inventory and EDGAR v8, mainly from fossil fuels and
landfills. Jeong and Millstein, 2014 created a 0.1 ° inventory for California using EPA factors and
activity data, finding oil and gas sector emissions 3 to 7 times higher than official estimates. For the
Barnett Shale, a 4 km x 4 km inventory integrated empirical data and Monte Carlo simulations (Lyon
et al. 2015). Inventories in the Permian Basin have been updated using improved activity data and
emissions characterisation (Zhang et al. 2020; Omara et al. 2023).

2.1.2 Application scenarios of gridded methane inventories

Gridded methane inventories are essential for atmospheric inverse modelling, refining bottom-up
estimates by comparing modelled emissions with observations. They provide an initial spatial and
sectoral distribution, prevent overfitting, and support interpreting discrepancies between modelled
and observed concentrations. Previous studies have demonstrated their importance, with Ishizawa
et al. (2024) using a regional inversion to identify discrepancies in western Canada based on EDGAR
v4.3.2, Varon et al. (2023) using TROPOMI satellite observations to analyse variability in the Permian
Basin with the gridded inventory produced by Maasakkers et al. (2016), and Lu et al. (2022) evaluating
methane inventories for North America, incorporating official gridded national inventories for the
United States, Canada, and Mexico (Maasakkers et al. 2016; Scarpelli et al. 2020; Scarpelli, Jacob,
Moran, et al. 2022). Beyond modelling, spatially explicit inventories support local assessments, enable
comparison with top-down measurements, and aid mitigation planning. Top-down measurements
include aircraft flux mapping, satellite column retrievals (e.g. TROPOMI and GHGSat), and ground-
based mobile or flux-tower observations, which are commonly used to evaluate or constrain bottom-
up estimates. Jeong and Millstein, 2014 highlighted their role in validating oil and gas estimates
against localised data, while Huang et al. (2024) used them to simulate significant short-term emission
events. Given Alberta’s vast upstream operations, a region-specific gridded inventory is critical to
improving methane monitoring and informing mitigation.
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2.1.3 Limitations of existing gridded methane inventories

Most existing gridded inventories rely on graticule-based grids, which introduce several limitations. A
major issue is the inconsistent resolution across latitudes, where cell sizes vary due to Earth’s curvature.
This distorts the visualisation of emission intensity and complicates inter-cell comparisons, especially at
higher latitudes. Grids at the equator are roughly equal in area, but those farther north shrink significantly,
inflating emission densities in standard projections. Emission intensity per unit area is not straightforward
to calculate in graticule-based grids because cell sizes vary. Unlike equal-area grids, where emission
intensities are directly comparable across cells, graticule grids require additional calculations to normalise
emissions by area. Some gridded inventories report values as emission fluxes, expressing methane intensity
per unit area and include the area of each grid cell in their published dataset. For example, Scarpelli, Jacob,
Moran, et al. (2022) provide emissions in Mg a~' km > and give the grid area in m~2 EDGAR inventories
distribute both yearly emissions gridmaps (in ton a~') and emission flux gridmaps (in kg m> s™') to
support atmospheric modelling applications. While an additional dimension of grid area provides the
context, it does not fully resolve the issue, as direct inter-grid comparisons become difficult when moving
across latitudes. Additionally, when visualised with standard map projections, size differences can mislead
assessments, making emissions appear more concentrated where grid cells are smaller. This can lead to
misinterpretation in both qualitative and quantitative analyses, particularly for atmospheric modelling and
emissions mitigation.

Moreover, while methodologies vary, most inventories rely on spatial proxies to allocate emissions, and
the accuracy of these proxies significantly impacts the final dataset. When used as prior estimates in
atmospheric inversion studies, these biases can propagate through the modelling process, potentially
leading to discrepancies between modelled and observed methane concentrations. Inventories such as
EDGAR have exhibited magnitude errors, with inverse studies requiring substantial upward corrections in
the South-Central U.S. (Miller et al. 2013; Wecht et al. 2014; Alexe et al. 2015; Turner et al. 2015). These
discrepancies primarily reflect differences in activity data and spatial proxy methodologies, rather than the
use of a graticule-based grid. For instance, EDGAR has misallocated oil and gas emissions by assigning
them to urban areas instead of production regions, leading to sectoral attribution errors (Maasakkers
et al. 2023).

2.2 Rearranged hierarchical equal area isolatitude pixelization (rHEALPix) DGGS

2.2.1 Overview of rHEALPix DGGS

The rHEALPix DGGS is a geospatially adapted variant of the Hierarchical Equal Area isoLatitude
Pixelization (HEALPix) system originally developed for the astronomical community. HEALPix, intro-
duced by Gorski et al. (2005), was designed to support cosmic microwave background radiation analysis
and is characterised by three key features: hierarchical tessellation, equal-area cells at every resolution, and
iso-latitude distribution of cell nuclei along lines of latitude.

Recognising its geospatial potential, researchers at Landcare Research in New Zealand extended
HEALPix in 2016 to create rHEALPix DGGS (Gibb 2016). Rather than projecting data onto a celestial
sphere, rHEALPix maps data onto Earth’s surface, adapting the structure for geospatial analysis (Bowater
and Stefanakis 2019b). The system projects a reference ellipsoid (commonly WGS84) onto the faces of a
cube, subdivides each face into cells, and then inversely projects the structure back onto the ellipsoid using
the rHEALPix equal-area projection (Gibb 2016). This creates a geodesic, specifically a cubic geodesic
DGGS, that hierarchically partitions the ellipsoid into equal-area cells across resolutions.

rHEALPix divides the Earth into two zones: an equatorial region (authalic latitudes < 41.8 °) consisting
of quadrilateral cells aligned with longitude and latitude (quad cells), and a polar region with variable
shapes (Figure 1): (1) Cap cells, centred on the poles and bounded by one parallel; (2) Dart cells, triangular
cells with two edges converging at the pole; and (3) Skew quad cells, with edges aligned along parallels
(Gibb 2016). The rHEALPix projection combines the Lambert cylindrical equal-area projection for the
equatorial region and the Collignon equal-area projection for the poles. As most of Canada lies above
41.8°N, Alberta is primarily composed of skew quad cells.
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Figure 1. lllustration of cell structures in the polar and equatorial regions of rHEALPix (N4 = 3) at resolution levels 2
and 3.

Each cell in the rHEALPix DGGS has a unique identifier. As defined by Gibb (2016), a cell ID begins
with one of the letters N, S, O, P, Q, or R, followed by a sequence of integers (0 to N;z.> — 1) assigned using
a Z-order space-filling curve from top to bottom and left to right. A general class of DGGSs for any integer
Niige = 2 is supported, where each planar cell is divided into Nz x N4 child cells at finer resolutions. For
this study, the rHEALPix DGGS with Nz = 3 was used, which means a cell is divided into nine child cells
in the next resolution (i.e., refinement ratio equals nine). This choice allows for aligned and congruent
hierarchies with the greatest number of resolutions per fixed maximum areal resolution (Gibb 2016).
Figure 2 shows the hierarchical cell indexing mechanism in rHEALPix DGGS with Ny, = 3, illustrating
how spatial subdivisions occur across resolutions. At resolution 0, the six base cells (N, O, P, Q, R, S) define
the initial framework, which is further subdivided into nine child cells at resolution 1 (Figure 2a,b).
Figure 2c demonstrates the continued hierarchical refinement with a detailed example of grid cell “S8” at
resolution 2. The centroid of each planar cell serves as the nucleus, and for ellipsoidal cells, the nucleus is
defined as the inverse projection of its planar counterpart. Due to the nature of the projection, the nuclei of
dart cells and ellipsoidal cells lie on constant-latitude rings (Bowater and Stefanakis 2019a).

Aggregation to coarser resolutions in the rHEALPix DGGS is a straightforward process due to its
hierarchical indexing mechanism. As illustrated in Figure 2, descendant cells share a common prefix with
their corresponding ancestors, enabling efficient data aggregation without requiring iterative processing
across multiple resolutions. Therefore, at any target coarse resolution, methane emissions can be calculated
directly by summing the values of all descendant cells from the native resolution. For example, suppose we
aim to compute the total methane emissions for the rHEALPix cell with ID “N83” at resolution level 2. In
that case, we sum the emissions of all descendant cells from the native resolution whose cell indices begin
with “N83”. Since the indexing structure inherently preserves hierarchical relationships, this method
eliminates the need for stepwise iteration through intermediate resolutions, making it computationally
efficient. It should be noted that aggregation at a coarse resolution level n from precomputed values at a
finer, native resolution should yield the same results as direct point binning at resolution #n. However, this
hierarchical aggregation approach essentially reduces computational overhead by eliminating the need to
repeatedly convert geographic coordinates to grid indices, thereby improving efficiency in large-scale
methane emission gridded inventories.

The rHEALPix DGGS has been applied in various studies. For example, Bowater and Wachowicz (2020)
developed methods to model offset regions around Internet of Things (IoT) device locations, both static
and mobile, by quantising them into rHEALPix cells. The Open Geospatial Consortium’s (OGC) Testbed-
16 explored DGGS implementations and APIs, identifying rHEALPix as both a reference system provider
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Figure 2. lllustration of rHEALPix cell indexing with Ngd. = 3: (a) six base cells at resolution 0; (b) subdivision of each
base cell into nine child cells at resolution 1; (c) further subdivision of cell “S8” at resolution 2.

and navigator (Gibb, Cochrane, and Purss 2021). Geoscience Australia adopted rHEALPix in AusPIX,
which links points, lines, polygons and rasters to DGGS cells and provides consistent repeatable identifiers
(Bell et al. 2020). The rHEALPix is also well-suited to harmonic analysis due to its isohedral cell
distribution, with nuclei arranged along constant-latitude rings, an advantage for specific geospatial
analyses (Bowater and Stefanakis 2019a). More recently, Gili¢ and Gasparovi¢ (2025) optimised the
authalic-latitude conversions used in rHEALPix, reporting approximately 21 times higher numerical
accuracy and 2.7 times faster execution for forward transformations, thereby improving equal-area fidelity

e
-
-
-
-

and runtime in practical implementations.




INTERNATIONAL JOURNAL OF DIGITAL EARTH 7

2.2.2 Properties benefiting methane emission gridded inventories

The rHEALPix DGGS has several properties that make it well-suited for methane emission gridded
inventories in Alberta. Its equal-area property, achieved via the Collignon projection in the polar region,
ensures each grid cell covers the same surface area, regardless of location. Kmoch et al. (2022) compared
various open-source DGGS systems, including Uber H3, Google S2, RiskAware OpenEAGGR, rHEALPix,
and DGGRID and found that rHEALPix, OpenEAGGR, and DGGRID’s ISEA-based DGGS offered the
strongest equal-area guarantees. rHEALPix maintains near-uniform cell areas across latitudes, with
variation under 0.01 normalised units (Kmoch et al. 2022). This enables consistent resolution and accurate
comparisons between grid cells across regions. Equal-area cells support accurate intensity visualisation and
simplify the calculation of emissions per cell. They also eliminate spatial bias caused by variable grid sizes
and simplify statistical analysis and regional comparisons.

Another essential feature is the alignment and congruency of cells. For this study, rHEALPix with
N_side=3 was used, producing hierarchical grids with aligned centroids and congruent geometry
(Figure 3a). Each parent cell cleanly subdivides into child cells without overlap or gaps, allowing
aggregation via simple summation. In contrast, systems like aperture-3 hexagonal tessellations may require
additional rules, as child cells can overlap multiple parent cells (Figure 3b). rHEALPix’s congruency
minimises computational complexity and facilitates cross-resolution analysis.

The rHEALPix DGGS also maintains consistent cell orientation across resolutions. This consistency is
due to its tessellation scheme and hierarchical structure, which is based on a cube as the base polyhedron.
As a result, the orientation of child cells matches that of their parent cells, ensuring smooth transitions
between resolutions during visualisation and improving the interpretability of results. In contrast, some
other DGGS alternatives can introduce offsets between successive resolutions, complicating visualisation
and analysis. For example, DGGS adopting aperture three hexagonal tessellation has a 30 ° offset between
each two consecutive resolutions, as shown in Figure 3.

The hierarchical indexing mechanism employed by rHEALPix DGGS further enhances its suitability for
methane emission inventories. Cells within the system are indexed such that their identifiers reflect their
hierarchical relationships (Figure 2). For example, a cell with the ID “N8336” is a descendant of cells
“N833,” "N83,” and “N8.” This indexing pattern allows for quick aggregation of methane emissions at
coarser resolutions by summarising the values of descendant cells at finer resolutions. It avoids the need
for time-intensive iterations across resolution levels, as the hierarchical structure inherently organises cell
relationships.

Although the system includes a small portion of dart cells in the polar regions, all cells in Alberta are
entirely skew quadrilateral cells, which align closely with traditional algorithms for spatial analysis based
on square pixels. This alignment simplifies subsequent spatial analyses and computational operations on

(@) (b)

- [

Child cell

Parent cell

Figure 3. Comparison of parent—child cell construction in two tessellation schemes: (a) aperture-9 square grid, which
preserves alignment and congruency between parent and child cells, and (b) aperture-3 hexagonal grid, which introduces
rotational offsets and partial overlaps between resolutions.
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the methane emission inventory, ensuring compatibility with existing methods and minimising the need
for specialised adaptations.

3. Methods
3.1 Data sources

3.1.1 Canada’s petroleum information network (Petrinex)

Petrinex is a centralised, web-based information system that the Canadian petroleum industry uses to
streamline and manage the collection, reporting, and exchange of key oil and gas data. It was developed
collaboratively by industry stakeholders and governments to enhance operational efficiency, reduce
administrative costs, and improve data accuracy. Specifically, Alberta Conventional Volumetric Data,
which refers to the reporting and management of production, receipts, dispositions, and other volume-
related activities for conventional oil and gas operations, was publicly available via the Petrinex data portal
(https://www.petrinex.ca/PD/Pages/APD.aspx) and used in this study. Petrinex serves as a comprehensive
and reliable data repository for Alberta's oil and gas industry, as the Alberta Energy Regulator (AER)
mandates that each licensee or operator maintain and file monthly activity records under AER Directive
007 (Alberta Energy Regulator 2025). From 2020 to 2023, 25175, 24302, 24272, and 23692 distinct facilities
reported their monthly volumetric data through this system, respectively. The Conventional Volumetric
Data provides detailed information about reporting facilities, their specific activities, and the products they
produce each month. In this study, we focused on the activities of Fuel, Flare, and Vent, which are the
primary sources of intended methane emissions from Alberta’s upstream oil and gas sector. The analysis
used data from 2020 to 2023, allowing for a multi-year assessment of methane emission trends. According
to the updated definitions in the AER Directive 060 (AER 2022), fuel gas refers to the gas combusted to
generate energy for upstream operations, while flare gas is combusted in flares or incinerators. Incomplete
combustion of fuel or flare gas results in methane and other greenhouse gas emissions into the atmo-
sphere. Vent gas, excluding fugitive emissions, is the uncombusted gas directly released into the atmo-
sphere during upstream operations.

3.1.2 Oil and gas infrastructure mapping (OGIM) database

The OGIM database is a global, spatially explicit dataset of oil and gas infrastructure developed by the
Environmental Defence Fund (EDF) and MethaneSAT, LLC (Omara et al. 2023). The OGIM database
supports quantification of methane emissions and source characterisation. It complements the Petrinex
data by providing detailed geospatial information on oil and gas infrastructure. OGIM v2.5.1, used in this
study, contains approximately 6.7 million features globally in the GeoPackage format. The database
integrates publicly available geospatial data from government agencies, industry, academia, and other
organisations (Omara et al. 2023). For Alberta, data sources include the Alberta Energy Regulator (AER),
Petrinex, the Government of Alberta, and Natural Resources Canada (Omara et al. 2023). We focused
specifically on Alberta’s facilities, including point feature layers such as oil and natural gas wells, natural
gas compressor stations, gathering and processing facilities, tank batteries, petroleum terminals, and
injection, disposal, and underground storage facilities. Layers representing offshore platforms, LNG
facilities, and crude oil refineries were excluded, as Alberta's oil and gas sector is predominantly onshore
upstream. Attributes in these layers include facility ID, type, status, operator, geospatial location, etc.
Notably, facility IDs in OGIM align with those in the Petrinex Conventional Volumetric Data, enabling
integration of geospatial infrastructure data with activity-based emissions data for this study. While
preliminary testing included 2024 Petrinex data, many reporting facilities lacked corresponding spatial
records in the 2023 OGIM release. Because accurate geolocation is essential for DGGS assignment, the
2024 data were excluded to maintain spatial consistency. The workflow remains fully extensible and can be
readily updated to include additional years once complete spatial records are available.

The integration of Petrinex activity data with the OGIM facility locations established the foundation for
quantitative emission estimation. Building on these aligned datasets, methane emissions were then
calculated for each facility using activity-specific conversion factors and standardised equations. The
datasets described above form the basis for constructing the DGGS-based methane emission layers. The
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following subsection details how these data were harmonised, standardised, and converted into the
rHEALPix DGGS framework.

3.2 Calculation of methane emissions

This step translates reported production and combustion volumes into mass-based methane emissions,
providing consistent, facility-level estimates that can later be spatially aggregated within the DGGS
framework. Methane emissions from upstream oil and gas operations were calculated based on the activity
data reported in the Petrinex system. Different methodologies were applied for Vent, Fuel, and Flare
activities to account for the specific mechanisms by which methane is emitted.

For Vent activity, Petrinex reports the total volume of uncombusted hydrocarbon gas released into the
atmosphere by each reporting facility. The mass of methane emissions from venting was calculated using
the following equation:

CH‘Yent = z (Vi x fCH4 X pCH4) (1)

where V; is the total volume of hydrocarbon gas reported by the facility i, f; is the mole fraction of

methane in the released hydrocarbon gas, which can be obtained from the Alberta Greenhouse Gas
Quantification Methodologies (Government of Alberta 2023). Pcp, is the density of methane at standard

conditions.

For Fuel and Flare activities, Petrinex reports the total volume of gas combusted at each facility.
Incomplete combustion during these processes results in methane emissions. The mass of methane
emissions from Fuel and Flare activities was determined using the following equation:

CHfuel/Flme — Z (Vi x EFCH) (2)
i

where V; is the total volume of gas combusted as reported by the facility i, and EF¢y, is the methane
emission factor, which represents the mass of methane emitted per unit volume of gas combusted. This
factor accounts for the rate of incomplete combustion and differs for Fuel and Flare activities. The
appropriate methane emission factors can be referenced from the Alberta Greenhouse Gas Quantification
Methodologies (Government of Alberta 2023).

Once facility-level methane emissions were quantified, the next task was to represent them spatially.
Using rHEALPix DGGS indexing, each reporting facility was assigned to an equal-area grid cell, allowing
emissions to be summed and visualised in a spatially consistent manner.

3.3 Aggregation of point source emissions

To aggregate point source methane emissions, a point-binning operation was applied using the rHEALPix
DGGS framework. This process involved mapping individual facility locations to corresponding
rHEALPix cells and summing their emissions within each grid cell. First, the geographic coordinates of
reporting facilities were converted directly into rHEALPix DGGS cell indices at a predetermined resolu-
tion using the rHEALPixDGGS-py library (Raichev, Gibb, and Car 2020). The facility locations were
sourced from the OGIM database, which provides spatially explicit infrastructure data for oil and gas
operations (Omara et al. 2023). It should be noted that determining the physical footprint of reporting
facilities in Alberta is challenging due to the variability in their sizes and configurations. The physical size
of these facilities can vary widely based on factors such as production capacity, operational complexity,
geographic location, and regulatory requirements. Therefore, there is no single 'correct’ resolution for
aggregating methane emissions in this scenario, as the choice of native resolution should balance the
spatial representation of facilities. The selected resolution should not be much smaller than the typical
facility footprint, nor much larger, to avoid excessive fragmentation and over-smoothing. In this study, we
chose resolution 9 as the native resolution, with an average cell size of approximately 0.22 km?, providing a
reasonable balance between spatial precision and emission aggregation. The specific characteristics of
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rHEALPix DGGS across different resolutions, including average ellipsoidal cell width and size, are detailed
in Table 1. Once the facilities were assigned to their respective rHEALPix cells, methane emissions were
aggregated by summing the calculated values for all facilities within each DGGS cell.

3.4 Aggregation at coarse resolutions

After individual inventories were converted to DGGS cells, multi-scale aggregation was performed to
support visualisation and comparative analysis across resolutions. In this study, methane emissions were
first converted to the native rHEALPix DGGS resolution corresponding to level 9. Aggregation to coarser
levels was then performed using prefix-based cell-ID summation, in which emissions from all descendant
cells are summed into their parent cell. This method preserves mass exactly and allows for efficient multi-
scale roll-ups without re-projecting or re-rasterising data. The general mathematical formulation and
properties of rHEALPix aggregation are described in Section 2.1.

3.5 Conversion of existing graticule-based grids to rHEALPix DGGS

In addition to constructing a DGGS-based inventory from Petrinex data, a comparable conversion was
performed for an existing graticule-based methane inventory to facilitate cross-framework evaluation. In
this study, we compared the spatial distribution of methane emissions with an existing graticule-based
inventory by converting it to the rHEALPix DGGS. A gridded inventory of Canada’s anthropogenic
methane emissions was developed by Scarpelli, Jacob, Moran, et al. (2022), providing a spatially allocated
representation of methane emissions from various source sectors. This gridded inventory distributes
methane emissions from Canada’s National Inventory Report (NIR) for 2018 onto a 0.1°x0.1° grid
(approximately 10 km x 10 km around the equator), covering the key emission sources such as oil and gas,
livestock, solid waste, residential combustion, coal, wastewater treatment and discharge, and other minor
contributors. For the oil and gas sector, the study used Petrinex data as one of the activity data sources,
specifically for Alberta and Saskatchewan (Scarpelli, Jacob, Moran, et al. 2022). Additionally, facility-level
information from Canada’s Greenhouse Gas Reporting Programme (GHGRP) was incorporated by
retaining the higher value over NIR-based spatially allocated emissions for each grid to enhance grid
reliability (Scarpelli, Jacob, Moran, et al. 2022). To maintain consistency with national totals, Scarpelli,
Jacob, Moran, et al. (2022) applied a scaling factor to all emissions not derived from the GHGRP, ensuring
that the total gridded emissions matched the NIR. The specific magnitude of this scaling factor was not
reported in their publication. The resulting dataset is available in netCDF format and is structured to
include multiple variables. Each netCDF file contains gridded data representing total sectoral emissions,
emissions disaggregated by subsector and source type, the latitude and longitude centres, and the area of
each grid cell.

A shared-area principle approach was applied to convert the gridded inventory by Scarpelli, Jacob,
Moran, et al. (2022) from netCDF format to the rHEALPix DGGS, ensuring that total methane emissions

Table 1. Summary of rHEALPix DGGS cell dimensions across resolutions.

Resolution level Average cell width (m, planar) Average cell area (m?, ellipsoidal)
0 1.00 x 107 851x10"3
1 3.34x10° 9.46x10"?
2 1.11 % 10° 1.05x 102
3 3.71x10° 1.17x 10"
4 1.24 % 10° 130x10'°
5 412x10* 1.44 % 10°
6 137 x 10* 1.60 x 10°
7 458x%10°3 1.78 x 10
8 1.53x 103 1.98 x 10°
9 509 2.20x 10°
10 170 24408

1 56.5 2712

12 18.8 301

13 6.28 335

14 2.09 3.72

15 0.698 0.413
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remained consistent before and after conversion. The process began by reconstructing a square-raster grid
from the netCDF data, where each data point, defined by a latitude-longitude pair, served as the centre of a
raster pixel. The methane emission values from the netCDF file were then assigned to their corresponding
raster pixels, each measuring 0.1° x 0.1°. Once the raster grid was established, the rHEALPix DGGS grid
was overlaid onto it, and each raster pixel could be intersected with multiple rHEALPix cells. The
rHEALPix grid grometries were generated using the rHEALPixDGGS-py library (Raichev, Gibb, and
Car 2020). The emission value of each raster pixel was proportionally distributed among the overlapping
rHEALPix cells based on the shared-area principle, which ensures that the fraction of emissions assigned
to each rHEALPix cell corresponds to the proportion of the raster pixel's area that overlaps with that
particular cell. For example, in Figure 4, the converted value of the blue rHEALPix grid is calculated using
the shared-area principle as follows:

r = ;W,'ni (3)
S.
W= — (4)
Sraster

where n; represents the original raster pixel value, w; is the corresponding weight, s; is the intersected area
of the specific raster pixel with the rHEALPix grid cell, and s, is the original raster pixel area. The raster
pixel values are proportionally allocated to the overlapping rHEALPix grid cells based on the area of
intersection, ensuring that the total emission value remains consistent across the transformation.

3.6 Visualisation via mapbox globe view

To facilitate the interactive visualisation of the multi-resolution gridded methane inventory, we developed
a web-based application using Mapbox (n.d.) to create a globe-centric view. This visualisation framework
enables users to explore the spatial distribution of methane emissions at multiple scales while maintaining
seamless transitions between resolutions. The visualisation implements scale-dependent visibility, ensuring
that coarser-resolution data is displayed at broader spatial extents, while finer-resolution data automati-
cally appears as users zoom in. We provide visualisation for the methane inventory generated in this study

Raster pixel

L]

rHEALPix grid

Figure 4. Conversion of raster pixel values to rHEALPix grids using the shared-area principle, where each raster pixel
(light grey) is distributed into overlapping rHEALPix grid cells (blue) in proportion to the area of intersection.
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and the dataset created by Scarpelli, Jacob, Moran, et al. (2022), which has been converted to the
rHEALPix DGGS. The interface includes layer management controls that allow users to switch between
datasets within the interface, and an interactive querying feature that enables users to retrieve methane
emission values by selecting individual grid cells. For example, Figure 5 illustrates the visualisation of the
2018 gridded methane emission inventory from the oil and gas sector, created by Scarpelli, Jacob, Moran,
et al. (2022), and converted to the rHEALPix DGGS. The large-scale spatial distribution of emissions is
shown at resolution 5 (Figure 5a), while Figure 5b and Figure 5c demonstrate the interactive querying
feature by displaying methane emission values at specific rHEALPix grid cells around Fort McMurray,
Alberta. At resolution 5, methane emissions for grid “N83376” are displayed, whereas at resolution 6,
emissions are retrieved for the more refined grid “N833761”.

It should be noted that the rHEALPix DGGS, like any DGGS with equal-area grid cells, inherently
preserves the spatial integrity of the data, regardless of the map projection used for display. This contrasts
with traditional projected maps, where different projections can distort the appearance and relative
proportions of spatial features, leading to varying interpretations of the same dataset. In the case of a
DGGS, although projection may still be required for visualisation, the grid's fundamental structure ensures
that cell sizes and shapes remain nearly uniform. As a result, the conveyed information remains consistent

(a)

coll_id N833761

1Atcii_oil_sands. 088134

coll_id N83WT6 1B2aii_oil_sands. 1187780

1Ateil_gas_production 000055 1B2bvi_gas_other 000009
1Ateil_oil_production 025214 1B2bv_gas_distribution 000011
1Ateil_oil_sands 160842 1B2ci1_oil_sands 169946
1B2aii_oil_production  0.71058 1B2ci2_gas_distribution 000001
1B2aii_oil_sands 2143002 1B2cii1_oil_sands 0.44654
1B2avi_oil_abandoned  0,00023 1B2cii2_gas_distribution 000000
1B2bii_gas_production  0,06843 Total_kt 15.10536
1B2bvi_gas_other 001425

1B2bv_gas_distribution 000012 1

182ci1 _oil_production 003642

1B2¢i1_oil_sands 340197

182ci2_gas_distribution 000001

1B2¢i2_gas_production  0,00527

1B2eil1_oil_production  0.00096

1B2cii1_oil_sands 080317

1B2cii2_gas_distribution 000000

1B2cii2_gas_production 000005

Total_kt 283218

Figure 5. Visualisation of the 2018 oil and gas methane emissions from Scarpelli, Jacob, Moran, et al. (2022), converted
to the rHEALPix DGGS. (a) Overview of emissions at resolution 5; (b) grid-level emissions for cell “N83376" near Fort
McMurray at resolution 5; (c) resolution 6 view for cell “N833761” at the same location.
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and independent of the chosen projection because the cells are known to be almost equal in size and shape
(Li and Stefanakis 2020; Li et al. 2024).

4. Results
4.1 Annual methane emissions from Alberta’s upstream oil and gas sector (2020-2023)

Methane emissions from upstream oil and gas operations in Alberta varied over the four years from 2020
to 2023 (Table 2). The total methane emissions across all sources, including fuel, flare, and vent, peaked in
2021 at 406.77 Kt a~ ' and gradually declined to 366.79 Kt a~ ' in 2023. This decline was primarily driven
by reductions in vented methane emissions, which accounted for the largest share of total emissions.
Vented methane emissions decreased from 244.49 Kt a—'in 2021 to 201.31 Kt a—'in 2023, with
considerable reductions observed in emissions from batteries (BT) and gas gathering systems (GS).
However, emissions from flaring increased steadily from 11.48 Kt a~'in 2020 to 16.70 Kt a~'in 2023,
primarily due to a rise in reported emissions from batteries (BT). Fuel-related methane emissions
remained relatively stable, fluctuating between 144.73 Kt a~'and 149.05 Kt a~ ! over the four years. In
2020, venting accounted for 59.3% of total emissions, fuel use for 37.8%, and flaring for 2.9%. By 2023, the
share of venting had decreased slightly to 54.9%, while fuel emissions remained stable and flaring
emissions increased slightly.

When analysing emissions by facility type, batteries (BT) consistently contributed the highest methane
emissions, particularly from venting, where emissions exceeded 211.72 Kt a~ ' in 2020 before declining to
178.00 Kt a~'in 2023 (Table 2). Gas plants (GP) and gas gathering systems (GS) also showed notable
contributions across all emission categories. Injection and disposal facilities (IF) exhibited lower emissions
across all categories, with fluctuations, particularly in fuel-related emissions, which increased from 28.26
Kt a= 'in 2020 to 83.47 Kt a— "in 2023 (Table 2). These trends indicate shifts in operational practices or
regulatory changes that may have influenced emission reporting and mitigation measures.

4.2 Spatial distribution and emission hotspots in Alberta

We have identified 12 high-emission hotspot grids at rHEALPix resolution 5 in Alberta, where hotspots
are defined as the top 5% of grid cells with the highest methane emissions for each year and persist over the
four years from 2020 to 2023. The identified high-emission hotspot grids are primarily located in two
regions, the Deep Basin near the Rocky Mountain foothills, which hosts extensive natural gas extraction,
and the Athabasca Basin in northeastern Alberta, where large-scale in-situ oil sands operations contribute
to persistent methane emissions. Figure 6 illustrates their locations and provides context from two sources:
(a) this study’s 2020 Petrinex-based emissions at rHEALPix resolution 5, and (b) the Scarpelli, Jacob,
Moran, et al. (2022) inventory for 2018, coarsened within the Alberta extent by aggregating the native grid
by a factor of three to approximate the cell footprint of Figure 6a without converting to rHEALPix. The

Table 2. Methane emissions from upstream oil and gas operations in Alberta (2020-
2023), categorised by Petrinex reporting facility types.

2020 2021 2022 2023
Fuel (Kt a™") Total 149.05 148.58 144.73 148.78
BT 22.31 22.26 22.33 2241
IF 28.26 83.58 7931 83.47
GP 84.51 28.85 29.37 29.49
GS 13.98 13.88 13.72 13.42
Flare (Kt a™") Total 11.48 13.71 14.58 16.70
BT 7.32 9.04 10.03 11.52
IF 0.06 0.31 0.04 0.04
GP 3.18 333 348 3.78
GS 0.92 1.03 1.03 137
Vent (Kt a™") Total 233.94 244.49 237.01 201.31
BT 211.72 219.38 211.75 178.00
IF 0.48 0.36 0.31 0.38
GP 8.20 10.59 11.22 9.93
GS 13.53 14.15 13.73 12.99

Total (Kt a™") 394.47 406.77 396.32 366.79
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(@)

Figure 6. High-emission hotspot grids at rHEALPix resolution 5 in Alberta (i.e. top 5% of cells persisting 2020-2023). (a)
This study’s 2020 Petrinex-based emissions. (b) Coarse resampled inventory by Scarpelli, Jacob, Moran, et al. (2022) within
the Alberta extent, without the conversion to rHEALPix.

Table 3. High-emission hotspot grids at rHEALPix resolution 5 in Alberta, representing the top 5% of cells with the
highest methane emissions persisting from 2020 to 2023. The table summarises facility counts, top-emitting facilities, and
annual methane emissions (Kt).

Highest emitting facility

Facility
Grid ID Number of facilities name Facility type 2020 2021 2022 2023
N75833 147-152 Wapiti S Gas Group 16-36-67-6w6 BT 9.49 11.35 10.69 8.52
N75837 248-262 Gas Effluent Karr 07-11-064-04W6 BT 10.36 11.52 10.69 10.09
N75871 148-166 Petromet Wildriver 10-20 BT 12.38 12.93 1233 10.08
Cecilia Wroe 8-12-57-25 MWB BT
N75875 66—133 Peyto Oldman 11-17 BT 7.81 7.63 7.69 6.38
Renaissance Gallaway 12-5 BT
N75883 140-160 Edson 04-11-053-18W5 GP 7.03 6.63 5.94 4.80
Edson 1-24-52-20W5 BT
N83374 4 Firebag Sagd Stage 1 Injection Facility IF 14.05 15.75 14.76 16.27
N83626 20-26 Cve Christina Lake Leismer 08-17 IF 24.00 25.97 26.00 26.52
N83655 14-16 Primrose East 04-14-067-04W4 IF 10.36 8.51 8.76 8.81
Primrose North 14-08-068-04W4 IF
N83658 330-370 Mahikan Injection System IF 12.79 12.24 16.43 15.96
N83736 117-122 Imperial Mahkeses 15-33 IF 6.12 5.53 5.88 5.58
N86001 477-528 Ferrier -5-45-9W5 Compressor Station GS 8.20 8.56 8.76 7.90
Bxe 9-3-44-10W5 Ferrier GS GS
N86005 587-594 Willesden Green14-15-039-06 W5M BT 8.05 8.54 7.42 6.18

coarse spatial correspondence between prominent cells in Figure 6b and our DGGS hotspots in Figure 6a
supports the stability of major emitting areas across datasets. Table 3 provides detailed information on the
number of facilities within each hotspot grid, the highest emitting facility, and annual methane emissions.
The top-emitting facility can be multiple facilities if different across years.

The number of facilities within each hotspot grid varies widely, ranging from as few as four facilities
(e.g. grid “N83374”) to more than 500 (e.g. grid “N86005”). Despite this variation, all identified grids
exhibit persistently high methane emissions. A few large facilities dominate some hotspots, while others
contain numerous smaller emitters that collectively contribute to high emissions. In particular, grid
“N83374”, despite hosting only four facilities, consistently emits over 14kt per year, indicating a
concentration of high-emission activities. Collectively, these hotspot grids emitted 130.63, 135.16,
135.36, and 127.10 Kt in 2020, 2021, 2022, and 2023, respectively, accounting for 33.1%, 33.2%, 34.2%,
and 34.7% of total methane emissions. This pattern reveals the spatial concentration of methane emissions,
where a small fraction of sites accounts for a disproportionate share of total emissions.
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Figure 7. Annual methane emissions from Alberta’s upstream oil and gas sector at rHEALPix resolution 6 for years 2020

to 2023, based on Petrinex data.
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Figure 7 illustrates the spatial distribution of Alberta's upstream intended methane emissions from 2020
to 2023 at rHEALPix resolution 6, and Figure 8 presents the spatial variations in annual changes. The
mean absolute change in methane emissions across all grid cells at resolution 6 was 0.024 Kt in 2021, 0.033
Kt in 2022, and 0.037 Kt in 2023, compared to 2020. Most grid cells showed minimal changes in emissions,
suggesting relative stability across much of the region. However, a few individual cells showed large
variations due to inconsistencies in facility reporting, where certain facilities reported no emissions in
some years but recorded values in others. For example, emissions in grid “N836152” decreased by 7.99 Kt
in 2022 and 7.98 Kt in 2023 compared to 2020 (Figure 8). This decline is attributed to two in-situ oil sands
facilities operated by ConocoPhillips Canada Resources Corp. (battery and injection sites) that did not
report any vent, fuel, or flare activities in 2023. The underlying reason for non-reporting, e.g. inactivity,
temporary shutdown, or other reporting circumstances, is outside the scope of this study. Conversely,
emissions in grid “N836582” increased by 4.59 Kt in 2022 and 4.41 Kt in 2023, primarily due to the
Maskwa Injection System facility, operated by Imperial Oil Resources Limited, which did not report any
vent, fuel, or flare activities in 2020 but recorded 3.69 Kt of emissions in 2022 and 3.54 Kt in 2023
(Figure 8).

To analyse the spatial concentration of emissions, we computed the Gini coefficient and Lorenz curve at
different resolutions. At resolution 5, the Gini coefficient is 0.73, indicating a moderately uneven
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Figure 8. Interannual changes in methane emissions at rHEALPix resolution 6 relative to 2020, based on Petrinex data.

distribution. This value increases to 0.76 at resolution 6, 0.81 at resolution 7, and 0.84 at resolutions 8 and
9, suggesting that emissions become increasingly concentrated within a smaller subset of grid cells at finer
spatial scales. The Lorenz curves further illustrate this trend, showing greater deviation from the Perfect
Equality line at higher resolutions, reinforcing that a few grid cells account for the majority of emissions
(Figure 9).

4.3 Comparison to existing graticule-based gridded inventory

To verify our DGGS conversion process, we compared total emissions before and after conversion against
the original Scarpelli, Jacob, Moran, et al. (2022) gridded inventory. The absolute difference between the
two totals was approximately 0.2%, confirming that mass was effectively conserved during conversion. To
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Figure 9. Lorenz curve of methane emission distribution across grid cells at rHEALPix resolutions 5 to 9.

Table 4. Spatial correlation coefficients (r) between Scarpelli’s 2018 methane
emission map (converted to rHEALPix DGGS) and this study’s Petrinex-based
methane emissions for 2020—2023, evaluated across different rHEALPix
resolution levels.

Petrinex conventional volumetric data

Resolution level 2020 2021 2022 2023
5 0.58 0.55 0.57 0.53
6 0.32 0.31 0.30 0.28
7 0.10 0.10 0.10 <0.1
8 <0.1 <0.1 <0.1 <0.1
9 <0.1 <0.1 <0.1 <0.1

evaluate the spatial consistency between this study’s methane emissions derived from Petrinex data and the
existing gridded oil and gas sector inventory by Scarpelli, Jacob, Moran, et al. (2022) in Alberta, we
computed the spatial correlation coefficient (r) between the two datasets. Since the Petrinex data used in
this study include only intended emissions from oil and gas operations in Alberta, fugitive emissions were
excluded from the work by Scarpelli, Jacob, Moran, et al. (2022) to ensure a consistent basis for
comparison. We only focused on the intended emissions from upstream oil and gas operations. The
comparison was performed grid-to-grid by converting Scarpelli et al. 2018 methane emissions map to the
rHEALPix DGGS framework and assessing the correlation across different spatial resolutions (Table 4).
Scarpelli et al. 2018 gridded inventory was initially reported on a 0.1°x0.1° grid, which closely
corresponds to rHEALPix DGGS resolution 6, where the ellipsoidal cell area is approximately 160 km?
(Table 1).

The results show that at coarser resolutions, e.g. levels 5 and 6, the correlation remains moderate, with r
values ranging from 0.58 in 2020 to 0.53 in 2023 at level 5 and declining to 0.32 in 2020 and 0.28 in 2023 at
level 6. However, the correlation drops substantially at the finer resolution of level 7 and above, reaching
values below 0.1 at levels 8 and 9 for all years. Given that resolution 6 aligns most closely with Scarpelli
et al. original grid, the moderate correlation suggests that methodological differences in emission alloca-
tion, such as facility-level spatial proxies or activity data, manifest more distinctly at localised scales. While
Scarpelli, Jacob, Moran, et al. (2022) allocated emissions using proxies such as population density and
GHGRP facility data, our approach directly aggregates facility-level Petrinex reports, thereby avoiding
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proxy-induced misallocations. The declining correlation at finer resolutions mirrors findings by
Maasakkers et al. (2016), who observed similar trends when comparing EDGAR v4.2 to spatially resolved
inventories. Such misallocations can propagate errors in atmospheric inversions. For instance, gridded
inventories that misattribute emissions to populated areas may skew inverse model outputs, as satellite
retrievals struggle to distinguish urban and industrial sources (Maasakkers et al. 2023).

Figure 10 shows the spatial comparison of Alberta's upstream intended methane emissions between
Scarpelli, Jacob, Moran, et al. (2022) gridded inventory in year 2018 and this study’s Petrinex-based
inventory, converted to the rHEALPix DGGS framework. The difference maps shown in Figure 11 reveal
that the magnitude of differences decreases at finer resolutions. This is because finer grids reduce
aggregation errors, isolating discrepancies to smaller spatial units where emission values are inherently
lower, even as spatial mismatches in source placement persist. For example, a hotspot misallocated by one
grid cell in a coarse resolution may span multiple cells at finer resolutions, lowering per-cell differences but
weakening overall correlation.

5. Discussion
5.1 Key findings and interpretation

Our DGGS-based analysis shows a highly uneven spatial distribution of upstream methane emissions in
Alberta. At rHEALPix level five, the top 5% of cells account for roughly one-third of the annual total, and
concentration increases at finer resolutions. These patterns align with the “super-emitter” phenomenon
observed in other oil-producing regions, where a minority of sites account for a disproportionate share of
sector-wide emissions (Cusworth et al. 2022 ; Lauvaux and Giron 2022 ). Hotspots persist across 2020 to
2023, which suggests that major emission centres are linked to stable infrastructure and operating practices
rather than short-lived events. The cross-framework comparison with a graticule-based inventory that we
converted to rHEALPix shows broad agreement in high-emission regions at coarse scales. It reveals
divergence at finer scales, where proxy-based allocation and reporting differences have greater influence.
These findings indicate that equal area and hierarchy-aware gridding separates methodological effects from
projection artifacts and improves interpretability for monitoring and policy analysis. These results confirm
the value of assigning facility-reported emissions at their native locations before aggregation. The
hierarchy then preserves mass as totals are rolled up, which supports fair comparison across resolutions.

5.2 Practical implications and adoption guidance

The rHEALPix DGGS provides immediate practical value for methane monitoring and reporting in
Alberta and in similar production regions. Equal area cells create a stable spatial unit that does not
change with latitude. This enables direct comparison of emission intensity across space and through time
without area normalisation, and it improves fairness in benchmarking and clarity in trend detection. The
workflow begins with facility-linked assignment to rHEALPix cells, so spatial accuracy is grounded in
reported locations rather than proxy redistribution. Exact aggregation across the hierarchy ensures totals
are consistent at every level, improving auditability for reporting and analysis.

Each cell has a persistent identifier, which turns the grid into a standard data bucket for facilities and
assets. Facility reports, infrastructure registers, maintenance records, satellite columns from TROPOMI,
GHGSat, and MethaneSAT, aircraft fluxes, and tower measurements can be stored and reconciled at the
exact locations regardless of their original resolution or format. The hierarchy supports consistent
aggregation at any scale. Results can be aggregated in a mass-conserving way from neighbourhoods
around facilities to basins and provinces and then to national summaries. Analysts can switch between
multiple granularities by selecting the rHEALPix level that matches the spatial question, with coarser levels
supporting regional assessment and finer levels supporting local screening. Because cell identities do not
change over time, the exact locations can be used for precise hotspot tracking and for evaluating
intervention outcomes. The fixed lattice also supports informed monitoring and survey design since aerial
routes, revisit schedules, and ground campaigns can be planned and evaluated against the same set of cells.
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Figure 10. Alberta CH, emissions mapped in rHEALPix at resolutions 5 to 7. The left panel represents Petrinex 2020 data

(this work), and the right panel represents Scarpelli, Jacob, Moran, et al. (2022) inventory data in year 2018 after
conversion to rHEALPix.

Adoption can begin without changes to transport models or enterprise data systems. Inventory
producers and modelling groups can publish priors and posteriors on native model grids and also on
one or more common rHEALPix levels. Mass-conserving and area-weighted operators can translate
fields between DGGS and native grids, and publishing these operators with uncertainty documenta-
tion enables transparent reuse. DGGS can serve as the standardised analysis layer for visualisation,
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Figure 11. Inventory differences between this work in 2020 and Scarpelli, Jacob, Moran, et al. (2022) data in 2018 at
rHEALPix resolutions 5 to 7. Positive values indicate higher emissions in this study.

quality control, inventory reconciliation, and regulatory reporting, while model cores and data lakes
remain unchanged. In inverse modelling, a DGGS-based inventory can be directly used as the
emission state, and the hierarchy allows multi-scale regularisation across parent and child cells.
DGGS, therefore, can serve as a standard spatial substrate that preserves mass and spatial consistency
for priors, posteriors, and operational metrics.

Equal area cells preserve spatial integrity in maps, so viewers are not misled by latitude-driven cell
deformation. Each cell represents a precisely defined area, enabling quantitative reporting of emissions
per unit area and improving compliance workflows. It also provides a clear definition of spatial
resolution so that analysts can refer to specific cell sizes rather than terms such as urban, basin, or
regional scale.

5.3 Limitations and future work

This study focuses on intended upstream emissions reported through the Petrinex portal. It does not yet
include midstream or downstream sources or diffuse linear and areal components such as pipelines and
urban leaks. Future work will broaden sectoral coverage and integrate satellite and aircraft constraints
directly in DGGS for joint inversions. The framework can also be extended to other greenhouse gases
while preserving mass at all aggregation levels. Another direction is the development of DGGS-native
regularisation and uncertainty quantification that uses the hierarchy to control spatial structure across
multiple scales. The framework is global and therefore well suited to Arctic monitoring, where equal-area
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cells avoid high-latitude distortion and support consistent tracking of permafrost-related methane signals
in remote regions.

6. Conclusions

This shows that rHEALPix DGGS is a practical foundation for a spatially explicit methane inventory in
Alberta’s upstream oil and gas sector. By using facility-level Petrinex data within an equal-area, hierarchi-
cal grid framework, we identified persistent high-emission hotspots, revealing that 5% of grid cells account
for over 34% of total annual emissions. Concentration strengthens at finer resolutions, which is consistent
with super-emitter behaviour reported in other basins. The equal-area lattice removes latitude-driven bias
and supports fair comparisons of intensities across space and time. Mass-conserving aggregation keeps
totals consistent across resolutions, improving transparency for analysis and reporting.

Our cross-framework comparison confirms that broad patterns are shared with a graticule-based
inventory at coarse scales. At the same time, differences emerge at finer scales where proxy allocation and
reporting choices matter most. These findings explain why an equal area and hierarchy-aware approach
improves interpretability. In practical terms, the fixed cell identifiers serve as standard data buckets for
facilities and assets, enabling multi-source integration that includes satellite columns, aircraft fluxes, and
ground sensors. The same cells can carry priors, posteriors, and operational metrics, and can be used to
target surveys, track interventions, and support compliance.

The approach generalises beyond Alberta. It can be extended to midstream and downstream sources, as
well as to other greenhouse gases, while preserving mass at every level. It also provides a natural substrate
for joint use of bottom-up inventories and top-down observations. In this sense, DGGS advances the
vision of a Digital Earth for methane monitoring, where emissions are referenced on a standard, equal-area
lattice that is stable over time and interoperable across systems. These results support wider adoption of
rHEALPix DGGS as a standard spatial substrate for methane analysis and policy workflows. It offers a clear
path to consistent hotspot screening, fair intensity benchmarking, and scalable reporting from facilities to
provinces and nations. With continued integration of satellite and aircraft data and broader sectoral
coverage, DGGS can help deliver actionable, auditable methane insights to decision-makers.
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