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Abstract
Measuring trajectory similarity is a fundamental algorithm 
in trajectory data mining, playing a key role in trajectory 
clustering, pattern mining, and classification, for instance. 
However, existing trajectory similarity measures based 
on vector representation have challenges in achieving 
both fast and accurate similarity measurements. On one 
hand, most existing methods have a high computational 
complexity of O(n × m), resulting in low efficiency. On 
the other hand, many of them are sensitive to trajectory 
sampling rates and lack of accuracy. This article proposes 
QuadGridSIM, a quadrilateral grid-based method for tra-
jectory similarity analysis, which enables high-performance 
trajectory similarity measure without the cost of low  
effectiveness. Specifically, we first realize the multiscale 
coding representation of trajectory data based on quad-
rilateral discrete grids. Then, a novel trajectory similarity 
measure is defined to reduce the computational complexity 
of O(n). Several effectiveness properties of QuadGridSIM 
are further optimized, including the spatial overlap, di-
rectionality, symmetry, and robustness to sampling rate 
variations. Experimental results based on real-world and 
simulated taxi trajectory data indicate that QuadGridSIM 
outperforms most of the other tested algorithms devel-
oped previously in terms of effectiveness, particularly 
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2  |    LIU et al.

1  | INTRODUC TION

With the remarkable development of modern technologies, such as intelligent perception, mobile positioning, 
and wireless communication, a large quantity of trajectory data containing the location information and behav-
ior status of individuals and groups are being generated and collected (Oueslati et al., 2023; Wang et al., 2020; 
Zheng, 2015). These trajectories are represented as a series of time sequence points (

(
P1, t1

)
, 
(
P2, t2

)
, 
(
P3, t3

)
, …, (

Pn, tn
)
). Each point contains a spatial location P (L,B), where L and B represent its geographic location (i.e., longi-

tude and latitude), and t is its location timestamp. Trajectory data have been extensively used in various fields 
because of their rich information in terms of time, space, and semantics, including intelligent transportation 
(Keler et al., 2017; Li et al., 2019), urban computing (Dodge et al., 2020; Guo et al., 2022), and social sensing (Li 
et al., 2016; Liu et al., 2015). Scholars have conducted studies on various trajectory data analysis methods, among 
which the trajectory similarity measure is one of the most fundamental algorithms for trajectory data mining 
(e.g., trajectory clustering, pattern mining, and trajectory classification) (Wang et al., 2021; Zheng, 2015). Such 
algorithms have long been a popular research topic (Dodge et al., 2012; Li, Liu, et al., 2022; Sousa et al., 2020) and 
widely applied in various scenarios (Magdy et al., 2015; Petry et al., 2019; Vlachos et al., 2002), such as commuting 
mode identification (Buchin et al., 2011), human activity prediction (Chekol & Fufa, 2022), personalized recom-
mendation (Liu & Seah, 2015), anomalous trajectory detection (Wang et al., 2018) and epidemic prevention and 
control (Kraemer et al., 2020).

Trajectory similarity measure means to quantitatively evaluate the similarity (or distance) between two trajec-
tories. This study focused on the spatial similarity of trajectories, where two trajectories are considered similar if 
they share close spatial paths (Furtado et al., 2018). Previously, many spatial similarity measures for trajectories 
have been proposed, such as the Euclidean distance (ED), Hausdorff distance (Hausdorff, 1914), dynamic time 
warping (DTW) (Berndt & Clifford, 1994), the longest common subsequence (LCSS) (Vlachos et al., 2002), edit dis-
tance with real sequence (EDR) (Chen et al., 2005), FastDTW (Salvador & Chan, 2007), symmetrized segment-path 
distance (SSPD) (Besse et al., 2016), and uncertain movement similarity (UMS) (Furtado et al., 2018). However, 
those existing methods of trajectory similarity measure lack an optimal balance between effectiveness and effi-
ciency. Specifically, the effectiveness is determined by properties such as directionality, symmetry, and robust-
ness to sampling rate variations, whereas the efficiency refers to the algorithm's computational time complexity. 
Basically, they can be divided into the following three categories: (1) neither effectiveness nor efficiency. The 
methods such as DTW, LCSS, Hausdorff, and SSPD have high computational time complexity (O(n × m)) and low 
efficiency, where n and m are the number of points of the trajectories to be calculated (Dodge et al., 2012; Magdy 
et al., 2015). In terms of effectiveness, DTW and LCSS are not effective in handling variations in trajectory sam-
pling rates. For instance, as shown in Figure 1a, the similarity between trajectory TO and trajectories TA or TB 
should be equal to 1 (distance is 0). However, since DTW evaluates the similarity based on the minimum value of 
the sum of point distances between two trajectories (Toohey & Duckham, 2015), the distance between TO and 

in its robustness regarding trajectory sampling rates. 
Furthermore, QuadGridSIM exhibits superior performance 
and is approximately one order of magnitude faster than 
previous methods in the literature. QuadGridSIM provides 
a solution to the low-efficiency problem of massive trajec-
tory similarity analysis and can be applied in many applica-
tion scenarios, such as route recommendation and suspect 
detection.
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    |  3LIU et al.

TA is larger than that between TO and TB. Likewise, LCSS calculates the maximum common subsequence of two 
trajectories (Vlachos et al., 2002), and consequently, the LCSS-based similarity between TO and TB is incorrectly 
greater than that between TO and TA. In addition, Hausdorff and SSPD lack directionality and are unable to dis-
tinguish between the similarity of two trajectories with the same path but opposite directions. Figure 1b illus-
trates the issue, where Hausdorff and SSPD calculate the similarity between TO′ and TA′ or TB′ as 1 (distance is 0), 
while the similarity between TO′ and TA′ with the same direction is higher than that between TO′ and TB′. (2) High 
efficiency but limited effectiveness. Although ED and FastDTW are known for their low algorithm complexity 
O(n) and high performance, they do not improve the effectiveness of trajectory similarity measures. FastDTW 
is optimized for performance based on DTW, but it still remains sensitive to the sampling rate. Meanwhile, ED 
cannot dynamically cope with trajectories of different lengths and accurately compute the similarity between 
trajectories (Su et al., 2020). (3) Effectiveness but low efficiency. UMS is a cutting-edge algorithm that excels in 
the effectiveness of trajectory similarity measures. It improves the robustness of the sampling rate by introducing 
an elliptical representation of trajectories and has properties such as directionality and symmetry. The accuracy of 
its similarity calculation is significantly better than other algorithms (Furtado et al., 2018). However, UMS has the 
same computational complexity (O(n × m)) as LCSS, DTW, Hausdorff, and SSPD, and its computational efficiency 
is not high enough to meet the demand for real-time or near real-time high-performance computing in the era of 
the internet of things (IoT).

Recent decades have witnessed a rapid development of computer technology and geographic informa-
tion technology, as well as the increasingly complicated representation, update, and analysis of geospatial 
information. The value of the geographic grid model has been recognized by previous research due to its ad-
vantageous features such as uniformity, discretization, multiresolution, and cell indexing (Gibb et  al.,  2022; 
Goodchild, 2018; Li & Stefanakis, 2020; Peterson, 2016; Yao et al., 2020). The geographic grid model can be 
defined as a system for representing a geographic entity using a series of discrete, regular cells according to 
some predefined rules (OGC, 2017; Ulmer et al., 2020; Zhou et al., 2010, 2023). Commonly used geographic 
grid geometries are triangle, quadrilateral, and hexagon (Hojati et al., 2021; OGC, 2017). Compared to triangular 
and hexagonal grids, the quadrilateral grid offers some advantages including perfectly hierarchical data struc-
tures, compatibility with existing quadtree-based algorithms, suitability for hardware and display devices, as 
well as integration with prevailing geospatial reference systems (Béjar et al., 2023; Bowater & Stefanakis, 2020; 
Gibb, 2016). Accordingly, the quadrilateral grid exhibits remarkable potential for trajectory data mining applica-
tions (Bowater & Wachowicz, 2020; May Petry et al., 2020; Qian et al., 2019). For example, Li, Liu, et al. (2022) 

F I G U R E  1 Examples of trajectory similarity measure on (a) trajectories with different sampling rates and 
(b) trajectories with a similar path but opposite directions.
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4  |    LIU et al.

proposed gsstSIM, a synchronized spatiotemporal trajectory similarity method based on the quadrilateral grid. 
This method simultaneously measures trajectory similarity in both spatial and temporal dimensions. gsstSIM 
improves the robustness and computational efficiency compared to the existing algorithms, excelling in time-
sensitive applications such as moving flock pattern mining. However, gsstSIM does not support applications that 
focus on spatial information mining such as trajectory spatial clustering and anomaly detection. This limitation 
stems from gsstSIM's strict integration of spatial and temporal dimensions during trajectory data modeling, 
preventing the independent measurement of trajectory spatial similarity. As depicted in Figure 2, trajectories Ta 
and Tb do not overlap in space–time, resulting in a spatiotemporal similarity of 0, that is, gsstSIM (Ta, Tb) = 0, de-
spite their spatial similarity. Thus, there is a demand for a fundamental, robust, and high-performance trajectory 
spatial similarity method based on quadrilateral grids.

Based on the above observation, this article proposes QuadGridSIM, a quadrilateral grid-based method for 
trajectory similarity analysis, to provide a high-performance algorithm for trajectory data mining without the loss 
of effectiveness indicated by directionality, symmetry, and robustness to sampling rate variations. Furthermore, 
the effectiveness, robustness, and performance of the proposed method are verified using real and simulated 
trajectory data. The major contributions of this article are summarized as follows:

•	 We model trajectories via the quad-grid coding with quadtree structure, to implement time-sequence, multi-
scale, and one-dimensional representation of trajectory space information and simplify trajectory data structure.

•	 A novel and high-performance method of trajectory similarity analysis, named QuadGridSIM, is proposed based 
on the quadrilateral grid. QuadGridSIM shows better effectiveness properties such as directionality, symmetry, 
and robustness to sampling rate variations while accelerating the trajectory similarity measure with low com-
putational complexityO

(
NA + NB

)
, where NA and NB are the number of codes of the two trajectories.

•	 We conducted extensive experiments using both real-world and simulated taxi trajectory data to demon-
strate the effectiveness, robustness, and performance of QuadGridSIM compared to the other state-of-the-art 
methods.

F I G U R E  2 An example of trajectory similarity analysis where trajectories exhibit spatial similarity but lack 
spatiotemporal similarity.
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    |  5LIU et al.

The remainder of the article is organized as follows. Section  2 proposes our new similarity measure 
QuadGridSIM and describes its workflow. Section 2.1 provides a detailed description and process of quad-grid 
coding representation of trajectories, and Section 2.2 introduces the main principles of QuadGridSIM. Section 3 
develops experiments using real-world taxi trajectory data and simulates the data to verify our proposed algo-
rithm. Finally, we conclude the article and outline further works in Section 4.

2  | PROPOSED METHOD— QUADGRIDSIM

The architecture of the quadrilateral grid-based method for trajectory similarity measure (QuadGridSIM) is shown 
in Figure 3. QuadGridSIM conducts the trajectory similarity measure in two main phases: (1) the quad-grid coding 
representation of the trajectory; (2) the definition of the trajectory similarity measure. First, a one-dimensional 
representation of trajectory data is encoded based on the quadrilateral grids to address the issues of two-
dimensional vector representation such as inconsistent sampling rates and low computing efficiency (Section 2.1). 
In other words, the original trajectory data (i.e., T1, T2, …, Tn) based on vector representation are converted to 
trajectory codes (i.e., S1, S2, …, Sn). Second, in contrast to the high computational complexity of current similarity 
measures under vector representation, we construct a novel and low-complexity trajectory similarity measure 

F I G U R E  3 Overview of the architecture of QuadGridSIM.
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6  |    LIU et al.

(QuadGridSIM) for trajectory codes. The mathematical properties such as overlap processing, directionality pro-
cessing, and symmetry processing of QuadGridSIM are described and proved in detail in Section 2.2.

2.1 | Quad-grid coding representation of trajectory

The grid-coding representation of trajectories consists of two parts: (1) the quad-grid subdivision and encoding in 
geographic space and (2) a multiscale code representation of trajectory. The former describes how to encode the 
spatial position on the Earth's surface, and the latter explains the principle of mapping trajectories to the quadri-
lateral grids and encoding them at various granularities.

2.1.1 | Quad-grid subdivision and encoding

The quad-grid system is built upon the quadtree structure, a well-established data structure known for its 
outstanding compatibility with vector coordinates, mature indexing mechanism, and simple spatial analysis 
(Bowater & Stefanakis, 2020; Gibb, 2016; Sun et al., 2009). In this system, the size of the parent grid cell is 
twice that of the child grid cell, ensuring a smoother spatial scale transition between adjacent levels (Qian 
et al., 2019). Figure 4 illustrates the basic principles of the quad-grid subdivision and encoding. First, the study 
area is defined and divided into four equal-size sub-areas, where each sub-area is further divided into four 
finer sub-areas recursively. Thus, the study area is recursively divided into 2N × 2N grid cells, where N is the 
subdivision level. A higher subdivision level means finer spatial resolution and leads to a more precise position 
of the geographic object. Second, the spatial locations of the study area are encoded based on the Z-order 
curve (i.e., Morton code) instead of the vector coordinate representation. The Morton code of each grid cell is 
calculated by interleaving the binary representations of its row and column numbers. As shown in Figure 4, the 
four grid cells at each level are marked by north-west (NW), north-east (NE), south-west (SW), and south-east 
(SE) and assigned codes 0, 1, 2, and 3, respectively. Connecting the assigned codes 0, 1, 2, and 3 in the NW-
NE–SW-SE sequence generates the recursively Z-order curve. The row and column numbers i  and j of P are 
6 (110) and 2 (010), and interleaving the binary coordinate values produces quaternary (or binary) grid codes, 
that is, the code of the point P is 221 (101100). Figure 5 shows an example that the study area (116.015625° E, 

F I G U R E  4 Quad-grid subdivision and encoding.
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    |  7LIU et al.

39.375° N, 116.71875° E, and 40.078125° N) has been encoded in the quad-grid code. It shows that the quadri-
lateral grid used in this study has a continuous spatial hierarchy with a twofold relationship regarding grid cell 
sizes between adjacent levels.

2.1.2 | Multiscale coding representation of trajectory

Similarity evaluation of vector-based trajectories with a two-dimensional data structure usually has a high compu-
tational complexity of O(n × m). This study, however, employs grid encoding (a raster data model) to map trajectories 
onto quadrilateral grids. This approach supports spatial trajectory encoding without the cost of high computational 
complexity. Trajectory data are represented as a sequence of time-ordered spatial grid codes (code1, code2, code3, …, 
coden), which can facilitate large-scale trajectory data management and analysis (Definition 1).

Definition 1. Trajectory codes. Under the geographic grid representation, a trajectory T is repre-
sented as a sequence of time-ordered spatial grid codes S = (code1, code2, code3, …, coden), where 
each code represents the location of a consecutive trajectory point in space.

The process of multiscale encoding of trajectories is illustrated in Figure 6. Initially, trajectory data can be 
mapped onto various grid levels for grid-based encoding. Subsequently, the suitable coding level is determined 
based on the spatial resolution requirements of diverse application scenarios, ensuring a balance between repre-
sentation accuracy and data volume. As shown in Figure 6, a higher grid level corresponds to fine-grained trajec-
tory grid codes and a larger quantity of trajectory codes. The trajectory code for a trajectory point is calculated 
using the row and column number of the corresponding grid cell, and the size of the grid cell is determined using 
Equation (1).

(1)

⎧
⎪⎨⎪⎩

ΔL=
�
L−Lmin

�
∕2N

ΔB=
�
B−Bmin

�
∕2N

F I G U R E  5 Example of quad-grid subdivision and encoding in the study area at Levels 4–6.
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8  |    LIU et al.

where N is the grid level of the trajectory matched, Lmin and Bmin are the minimum longitude and latitude of the study 
area, and L and B are the longitude and latitude of the trajectory point to be encoded, respectively. The row and col-
umn numbers of the grid cell where the trajectory point is matched can be calculated using Equation (2).

Then, the code for each trajectory point is obtained by converting the row and column number of the corresponding 
grid cell into the binary format and applying separate cross-coding based on Morton's principle. Finally, to address the 
impact of different sampling rates on similarity measures, Equation (3) is used to interpolate the trajectory points (e.g., 
points P5 and P6 in Figure 6) and obtain the consecutive trajectory codes.

where XCell centerline is the longitude of the centreline of a cell to be interpolated and (X1, Y1), (X2, Y2) are the coordinates 
of two adjacent points making up the trajectory. As a result, trajectories with varying sampling rates can be uniformly 
represented as a continuous set of trajectory codes.

Example of coding representation of trajectory
Figure 6 demonstrates an example of multiscale trajectory representation by the steps explained above, where 
Lmin, Bmin, Lmax, and Bmax of the area of interest are 116.015625° E, 39.375° N, 116.71875° E, and 40.078125° N, re-
spectively. First, the trajectory T is mapped to the quadrilateral grids at Level 10. Then, the row and column num-
bers of the grid cell representing the first point P1 are 176 and 599, respectively, according to Equations (1) and (2). 
Finally, the code of point P1 is converted to 1021230111 by cross-coding the binary representation of its row and 

(2)

⎧
⎪⎨⎪⎩

row=2N−
��
B−Bmin

�
∕ΔB

�
−1

column=
��
L−Lmin

�
∕ΔL

�

(3)

⎧
⎪⎨⎪⎩

X=XCell centerline

Y =
Y2−Y1

X2−X1

�
X−X1

�
+Y1

F I G U R E  6 Pipeline of multiscale trajectory encoding.
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    |  9LIU et al.

column numbers. The trajectory is interpolated by adding P5 and P6 using Equation (3) when mapping trajectory T at 
Level 10 to ensure directionality in the trajectory grid representation and robustness to the variability in the sam-
pling rate (Figure 6). Finally, the grid code of each trajectory point is calculated to obtain the code of the trajectory 
T, which transforms the vector-represented trajectory T = ((116.427269° E, 39.956932° N), …, (116.4252090° E, 
39.954872° N)) to the trajectory code S = (1021230111, 1021230112, 1021230103, 1021230102, 1021230120, 
1021230122).

2.2 | Similarity measure for trajectory codes

In this section, we propose QuadGridSIM, a quadrilateral grid-based method for the trajectory similarity meas-
ure. Two trajectories with high overlap in space and the same direction are viewed as having high similarity. 
Specifically, QuadGridSIM evaluates trajectory similarity from three perspectives:

1.	 Overlap. Determine the shared spatial path between two trajectories.
2.	 Directionality. Trajectories with the same direction of the shared spatial path exhibit higher similarity.
3.	 Symmetry. The similarity is the same between the two trajectories as either the reference or the target trajectory.

We first present the overlap processing. Intuitively, more identical codes in two trajectory codes mean a larger 
overlap between them. In other words, more overlap of the codes between two trajectories leads to more spatial 
adjacency and higher similarity of the two trajectories. Thus, it is straightforward to measure the overlap between 
two trajectories by identifying the intersection between their trajectory codes. As illustrated in Figure 7a, two 
trajectories, TA1 and TB1, are considered similar if their trajectory codes are identical after mapping to the grid 
at the same level. There are special cases where two trajectories are spatially similar while coincidentally falling 
in different sets of trajectory grid cells (e.g., TA2 and TB2 in Figure 7b). In this case, the intersection of the two 

F I G U R E  7 Overlap calculation for trajectory codes: (a) the typical case where two trajectories are spatially 
similar and their trajectory codes are identical; (b) the special case where two trajectories are spatially similar but 
happen to fall into different grid cells; and (c) code dilation operation used to extend the trajectory codes.
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10  |    LIU et al.

trajectory codes is an empty set, which causes low similarity between the two trajectories. To address this issue, 
we introduce the operator named code dilation to compute the adjacent grid codes. The basic idea of code dilation 
is similar to buffering in vector coordinates, aiming to capture similar trajectories in adjacent grids. The pseudo-
code is shown in Algorithm 1. First, the target code c is decoded to derive the grid's row and column numbers (line 
1), a process that inversely interleaves Morton code. Specifically, the target code is converted to binary, and its 
bits are separated into dimension-specific groups to generate the corresponding row and column numbers. Then, 
the row and column numbers of adjacent grid cells are calculated by adding or subtracting the expansion radius d 
(lines 2–6). Finally, adjacent grid codes cd are obtained by encoding these adjacent grid cells.

Algorithm 1: Code dilation 
Input: Trajectory code c, radius d

 Output: Adjacent trajectory code cd

1 row, column ←decode (c) 

2 for each m in range (-d, d) do
3 for each n in range (-d, d) do
4 cd.add (encode (row+m, column+n)) 

5 end for 
6 end for 

In Figure 7c, an example of code dilation is presented with an expansion radius of d = 1, meaning the eight ad-
jacent grid codes are calculated. First, the target grid code 1021230111 is decoded to obtain the row (i = 179) and 
column ( j = 566) numbers of the corresponding grid cell. Then, the row and column numbers of the eight adjacent 
grid cells are calculated. For instance, for the bottom-right grid cell, the row and column numbers are computed as 
(i + 1 = 180, j + 1 = 567). Finally, the eight adjacent grid codes (n1–n8) are generated through grid encoding.

Using code dilation, the target trajectory TA2 can obtain its extended codes Sd
A2

, which can realize the overlap 
calculation between two trajectories spatially close while not in the same grid cells. In summary, we define the 
overlap in Definition 2, and Algorithm 2 shows the pseudocode of overlap.

Definition 2. Overlap. For two trajectory code sets SA and SB, give a trajectory code ck ∈ SA, the 
code ck is dilated to cd

k
, the function Overlap (cd

k
, SB) → Ok

c
, SA × SB → OS returns a list OS with all codes 

cl ∈ SB such that cl in cd
k
, ordered by the sequence of SA.

It is not sufficient to rely on overlap alone as a measure of the similarity between two trajectories, since overlap 
only captures their spatial proximity and neglects their directionality. For example, as shown in Figure 1b, trajec-
tories TO′ and TB′ are spatially close to each other but move forward in opposite directions. If the similarity of the 
two trajectories is measured solely by overlap, the calculated similarity values by methods such as Hausdorff and 
SSPD are 1 (indicating perfect similarity, i.e., 100% overlap), which is not true considering the directionality of the 
trajectories. Therefore, we refer to the continuity of the UMS and incorporate it into QuadGridSIM to correct the 
overlap between two trajectories SA and SB by considering their directional properties. Specifically, we need to 
determine the first overlap position for each Ok

c
, as the overlap Ok

c
 between the cd

k
 and trajectory SB may contain 

several codes. The definition of the first overlap position is given in Definition 3. The first overlap position of Ok
c
 

is defined as the smallest position that is greater than or equal to the first overlap position of the previous Ok−1
c

 . 
Figure 8 presents an example that computes the first overlap position between trajectories SA2 and SB2. In the 
initial step, Figure 8a shows the overlap O1

c
 (two yellow grid cells) between the dilation c1

1
 (d = 1) and trajectory SB2. 

O1
c
 contains the first two codes of the trajectory SB2, yielding the positions of O1

c
 as [1,2]. As per Definition 3, first 
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    |  11LIU et al.

(c1
1
, SB2) identifies the lowest value from the set [1,2] when k = 1, that is, first (c1

1
, SB2) = 1. Upon proceeding to k = 2, 

as delineated in Figure 8b, the positions of overlap O2
c
 between c1

2
 and trajectory codes SB2 are [1, 2, 3]. Accordingly, 

first (c1
2
, SB2) is the lowest value from [1, 2, 3] that is equivalent to or surpasses the value of first (c1

1
, SB2) = 1, thus 

first (c1
2
, SB2) = 2. Similarly, the first overlap position between the last code dilation of trajectory SA2 and SB2 is first 

(c1
13
, SB2) = 13 (Figure 8c).

Algorithm 2: Overlap 
Input: Trajectory codes SA and SB, level N, radius d
Output: Overlap between SA and SB, OS

1 H ← 2N×2N array of empty lists 

2 for cl in SB do
3 row, column ←decode ( ) 

4 H[row][column].add ( ) 

5 end for 
6 for ck in SA do

7 ←Code dilation ( )
8 for each code in do
9 i, j ←decode (code) 

10 if H[i][j] is not Null then    // O (1) time expected 

11 .add (H[i][j]) 
12 end if 
13 end for 
14 OS.add ( ) 

15 end for 

F I G U R E  8 First overlap position calculation for trajectory codes with dilation radius d = 1: (a) the positions of 
overlap O1

c
 for the first code (k = 1) of trajectory SA2; (b) the positions of overlap O2

c
 for the second code (k = 2) of 

trajectory SA2; and (c) the positions of overlap O13

c
 for the last code (k = |SA2| = 13) of trajectory SA2.
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12  |    LIU et al.

Definition 3. First Overlap Position. For two trajectory code sets SA and SB, give a trajectory code 
ck ∈ SA, the first position of overlap between cd

k
 and SB is given by the function first (cd

k
, SB) according 

to the following conditions:
1.	 if k = 1 ∧ ∃ cl ∈ Ok

c
, the lowest value of position l is returned;

2.	 if k > 1 ∧ ∃ cl ∈ Ok
c
, the lowest value of position l such that l ≥ first (cd

k−1
, SB) is returned;

3.	 otherwise, the value −1 is returned;

Definition 4 gives the directionality of the overlap of two trajectories based on time-series property, and 
Algorithm 3 shows the pseudocode of directionality. Under the directional constraint, the similarity is only con-
sidered high when two trajectories have high overlap in space and high consistency in the movement direction.

Definition 4. Directionality. For two trajectory codes SA and SB, let the first overlap position set of 
SA be U = (first (cd

1
, SB), first (cd

2
, SB), …, first (cd

n
, SB)), then directional overlap Ð = {uk | uk ∈U, and uk ≠ −1}.

Algorithm 3: Directionality 
Input: Overlap between SA and SB, OS

Output: Directional overlap Ð between SA and SB

1 for each in OS do
2 if  is the first element of OS then
3                 U.add (min (position)) 

4 else
5 for each position in do
6                         if position >= U [-1] then
7                                 temp.add (position)

8 else  
9                                 temp.add (-1) 

10 end if
11 end for
12                 U.add (min (temp)) 

13 end if
14 end for 
15 for each u in U do
16         if u ≠ −1 then
17                 Ð.add (u) 

18 end if
19 end for

In summary, we obtain directional similar segments of the two trajectory codes SA and SB, namely the direc-
tional overlap Ð. For example, in Figure 8, the directional overlap ÐAB2 = [1, 2, …, 13] is evidenced between trajec-
tories SA2 and SB2. To further quantify the similarity, we define the similarity of the two trajectories in Definition 
5. This function is implemented by dividing the length of the directional overlap Ð by the average length of their 
respective trajectory codes, as expressed in Equation (4).
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    |  13LIU et al.

Definition 5. Similarity. Using two trajectory codes SA and SB, we define the SIM (SA, SB) as follows:

where Ð is the directional overlap sequence of trajectory codes SA and SB, ||SA|| and ||SB|| are the num-
bers of codes on trajectories SA and SB, respectively.

While the function SIM is capable of measuring the similarity of two trajectories, it lacks symmetry, result-
ing in SIM (SA, SB) ≠ SIM (SB, SA). This disparity arises due to the dependence of the directional overlap Ð on the 
trajectory chosen for dilation. For example, as shown in Figure 9, dilation using SA3 yields the directional overlap 
|ÐAB3| = |SB3| = 5 for SA3 and SB3. However, this changes when dilating with SB3, leading to |ÐBA3| = |SA3| = 8.

To address this inherent asymmetry, we adopt a symmetrization strategy outlined in Definition 6. This strategy 
entails separately computing SIM (SA, SB) and SIM (SB, SA), followed by averaging them, yielding the final similarity 
measure between the trajectories in Equation  (5). Finally, the formal definition of QuadGridSIM is established 
through Equation (5), supported by the pseudocode detailed in Algorithm 4. This symmetrization process rectifies 
the impact of trajectory selection during dilation, ensuring a balanced and unbiased similarity assessment.

Definition 6. Symmetry. Symmetrize the similarity between two trajectory codes SA and SB such 
that QuadGridSIM (SA, SB) = QuadGridSIM (SB, SA).

Algorithm 4: QuadGridSIM 
Input: Trajectory codes SA and SB, level N, radius d

 Output: Similarity between TA and TB

1 OS_AB ← Overlap (SA, SB, N, d) 

2 OS_BA ← Overlap (SB, SA, N, d) 

3 ÐAB ← Directionality (OS_AB) 

4 ÐBA ← Directionality (OS_BA) 

5 Similarity ← (|ÐAB|+| ÐBA|)/(|SA|+|SB|) 

(4)SIM
(
SA, SB

)
=

2 × |Ð|
||SA|| + ||SB||

(5)QuadGridSIM
(
SA, SB

)
=

(
SIM

(
SA, SB

)
+ SIM

(
SB, SA

))
2

F I G U R E  9 The difference in directional overlap Ð for dilation with (a) SA3 and (b) SB3.
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14  |    LIU et al.

The range of similarity values computed using QuadGridSIM falls within the interval [0, 1]. A similarity value 
of 0 is obtained when trajectories SA and SB exhibit no overlap. Conversely, a similarity value of 1 is attained when 
trajectory SA perfectly overlaps with trajectory SB, resulting in ÐAB and ÐBA being equal to the lengths of trajectories 
SB and SA, respectively. Additionally, we further define the distance between trajectories SA and SB in Equation (6):

We conclude that the overall complexity of QuadGridSIM (SA, SB) is O (NA + NB), as linear complexity, where NA 
and NB are the numbers of codes for trajectory codes SA and SB, respectively. QuadGridSIM holds the similarity 
properties of reflexivity and nonnegativity, besides directionality and symmetry. Give any two trajectories TA and TB 
with the number of points greater than or equal to 2:

Lemma 1. Reflexivity: if Trajectory TA = Trajectory TB, then QuadGridSIM (SA, SB) = 1.

Proof: Direct from Equations (4) and (5).

Lemma 2. Nonnegativity: QuadGridSIM (SA, SB) ≥ 0.

Proof: Known trajectories TA and TB with the number of points greater than or equal to 2, thus |SA| > 0, 
|SB| > 0, directional overlap Ð ≥ 0. From Equations (4) and (5), QuadGridSIM (SA, SB) ≥ 0.

3  | E XPERIMENTS AND ANALYSIS

3.1 | Experiment dataset

This study uses real-world and simulated taxi trajectory data to evaluate the performance of QuadGridSIM. The 
real-world trajectory data were collected by approximately 20,000 taxis in Beijing, China during 1 week in 2012 
(Figure 10). Based on different experimental scenarios, three datasets with varying sizes were processed (Table 1). 
Among them, TD1 contains 1 million trajectories, including 46,561,710 trajectory points, which are used to evalu-
ate the performance of the trajectory similarity measures on large-scale data. The length of each trajectory ranges 
from 5 to 70 km, with attributes including license plate number (encrypted for privacy protection), positioning 
time, longitude, latitude, speed, and direction (Table 2). According to the positioning accuracy of the trajectory 
data and their geographic coverage, the study area (116.015625° E, 39.375° N, 116.71875° E, 40.078125° N) is 
modeled by the quadrilateral grid at 10 levels where the grid cell size is about 60 m at the finest level.

3.2 | Experiment environment

The computing environment is a Dell computer with a four-core Intel i5-4210H 2.90 GHz processor, 16 GB of 
memory, 500 GB HDD, and Windows 10 64-bit operating system. All algorithms were implemented in Python 3.6, 
and the MySQL database was used to store the trajectory data.

3.3 | Baseline methods

In our experiment, we compared QuadGridSIM with seven other commonly used algorithms including ED, 
LCSS, DTW, Hausdorff, SSPD, UMS, and FastDTW, to comprehensively evaluate our proposed algorithm. 

(6)D
(
SA, SB

)
= 1 − QuadGridSIM

(
SA, SB

)
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    |  15LIU et al.

F I G U R E  1 0 Spatial distribution of the experimental trajectory data in the study area.

TA B L E  1 Summary of experimental datasets.

Trajectory dataset No. of trajectories No. of points
Avg. sampling 
interval/s

TD1 1,000,000 46,561,710 11

TD2 100,000 5,584,305 13

TD3 283 32,637 10

TA B L E  2 Example of taxi trajectory data.

Taxi ID Time Longitude Latitude Speed (km/h) Direction

111402 2012-11-01 07-07-06 116.309166 39.963924 40.51 248

111402 2012-11-01 07-07-16 116.307999 39.963455 40.05 247

…

163408 2012-11-07 12-06-57 116.524978 39.953712 52.46 12
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16  |    LIU et al.

There are three reasons for adopting these algorithms as baselines for comparison. First, they have high com-
putational performance, where ED and FastDTW have computational complexity as low as (O(n)). Second, they 
are widely used in various fields, especially LCSS, Hausdorff, and DTW. Third, they are optimized in various 
aspects. Particularly, UMS is a recently proposed and advanced method using an elliptical representation of 
trajectories, which makes it more robust when dealing with movement uncertainty. Furthermore, SSPD is op-
timized for Hausdorff in terms of robustness to the sampling rate. Comparison with other trajectory similarity 
measures has been carried out in other related work (Mariescu-Istodor & Fränti, 2017; Su et al., 2020; Toohey 
& Duckham,  2015). Open-source codes for these baseline methods are available in the previous research 
(Besse et al., 2016; Furtado et al., 2018).

3.4 | Effectiveness evaluation of QuadGridSIM

The classic retrieval metric precision at recall (Baeza-Yates & Ribeiro-Neto, 1999; Furtado et al., 2018) was utilized to 
verify the effectiveness of QuadGridSIM in measuring trajectory similarity. The basic idea of this metric is that a higher 
precision in querying the K most similar (top K) trajectories at different recall levels implies better effectiveness of the 
similarity method. Initially, (1) the crowded route is selected and all trajectories within the route are manually identi-
fied as the ground truth ϑ. Generally, the trajectories in ϑ have a high similarity to each other. As shown in Figure 11, 
this experiment selected three commuting routes (ϑ1, ϑ2, and ϑ3) in Beijing, containing 16, 20, and 24 trajectories, 
respectively. The selection of these routes is based on three criteria, including a crowded path, different sampling 
rates, and opposite motion directions, to verify the effectiveness of similarity measures from multiple aspects. Then, 

F I G U R E  11 Trajectories in the ground truth ϑ1, ϑ2, and ϑ3.
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    |  17LIU et al.

(2) the dataset TD1 is chosen as the candidate trajectory dataset, and the similarity is calculated between all trajecto-
ries in the ground truth ϑk with each trajectory in the entire TD1. Next, (3) the trajectories are ranked based on their 
similarity, and the top K similar trajectories are returned, and (4) the precision is computed for size (ϑk) levels of recall. 
Generally, a “perfect” method is expected to retrieve top K similar trajectories that should belong to ϑk regardless of 
the recall levels. Consequently, when the recall level is 1 (i.e., all similar trajectories inside ϑk are recalled), a perfect 
method would retrieve top K similar trajectories that belong exclusively to ϑk (i.e., size (ϑk) = K and precision is 1). 
Finally, (5) two accuracy metrics, MAP (mean average precision) and BEP (break-even point), are chosen to evaluate 
the overall performance of QuadGridSIM and other baseline methods. MAP measures the average precision across 
all recall levels, while BEP is the intersection point of the precision and recall curve. MAP and BEP take values in the 
range of [0,1], and higher MAP and BEP indicate higher effectiveness of the similarity measure.

The experimental results are presented in Table 3, indicating that QuadGridSIM and UMS outperform all other 
algorithms. DTW, Hausdorff, and SSPD had the second-best performance, followed by LCSS and ED. The ability to 
handle the complexities of realistic trajectories is the key factor in determining the performance of each method. The 
QuadGridSIM and UMS algorithms possess the essential properties of a similarity method, such as spatial overlap, 
directionality, and symmetry, and are also capable of handling different sampling rates (more details are provided in 
Section 3.5). DTW is highly sensitive to the sampling rate, and the results of trajectory distance calculation can vary 
significantly based on the number of trajectory points in the same path. The main limitation of Hausdorff and SSPD is 
their exclusive focus on the spatial overlap of trajectories, neglecting the directionality of trajectories. Consequently, 
they are unable to distinguish between similar trajectories that overlap but move in opposite directions. LCSS focuses 
on local similarity, particularly for small trajectories, and can result in the highest similarity in cases where the query 
trajectory is a sub-trajectory of the candidate trajectory, resulting in a maximum similarity score of 1 without penal-
izing dissimilar parts. Moreover, ED lacks dynamic time-warping characteristics, resulting in its extreme sensitivity to 
the trajectory's sampling rate and incapable to accurately measure the similarity between two trajectories.

3.5 | Robustness to sampling rate evaluation of QuadGridSIM

This section evaluates the robustness of QuadGridSIM and the baseline methods when dealing with different sam-
pling rates. The experimental dataset used was TD3, which contained a total of 283 trajectories with a sampling 
interval of approximately 10 s. All trajectories are resampled at intervals of 20, 30, 40, 50, 60, 70, 80, 100, 120, and 
150 s. The trajectory data with a sampling rate of 60 s were selected as the baseline for calculating similarity with tra-
jectories at other sampling rates. Thus, the trajectories with sampling rates of 20, 30, 40, and 50 s, relative to 60 s, have 
an increase rate of 200, 100, 50, and 20%, respectively. Similarly, the trajectories with sampling rates of 70, 80, 100, 
120, and 150 s, relative to 60 s, have a missing rate of 14, 25, 40, 50, and 60%, respectively. DTW, Hausdorff, SSPD, 

TA B L E  3 Mean average precision (MAP) and break-even point (BEP) for all the methods.

ϑ1 ϑ2 ϑ2

MAP BEP MAP BEP MAP BEP

QuadGridSIM 0.73 0.73 0.82 0.82 0.83 0.81

UMS 0.75 0.69 0.8 0.75 0.85 0.76

LCSS 0.06 0.09 0.01 0.02 0.07 0.12

DTW 0.42 0.39 0.47 0.46 0.39 0.42

Hausdorff 0.37 0.37 0.42 0.42 0.45 0.45

SSPD 0.34 0.37 0.4 0.41 0.43 0.46

ED 0.02 0.07 0.06 0.09 0.11 0.12
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18  |    LIU et al.

and ED were normalized by the maximum distance so that the interval for distance calculation was [0,1]. The distance 
threshold ϵ for LCSS was set to 200 m and the distance was normalized based on the length of the shorter trajectory. 
All methods are evaluated based on their similarity, which is computed as 1 minus the normalized distance. In theory, if 
a method is not vulnerable to various sampling rates, the similarity between the 60 s trajectory and the other sampled 
trajectories should remain 1 (or the distance should remain 0).

Figure  12 shows the influence of the sampling rate (increasing and missing ratio) on various similarity 
measures: (1) For the increasing ratio (Figure 12a), QuadGridSIM outperforms all other methods due to contin-
uous coding representation, which makes it highly resilient to varying sampling rates. UMS, LCSS, Hausdorff, 
and SSPD performed well in the experiments. LCSS is effective in handling increasing sampling ratios, as the 
similarity between the query trajectory sampled at the 60 s and the denser trajectory approaches 1. This is 
because as the sampling rate of the trajectory increases, the 60-s query trajectory becomes a sub-trajectory 
of the higher sampling rate trajectory and is completely covered. Hausdorff and SSPD generated smaller dis-
tances as the spatial interval between points became smaller. DTW and ED are most affected by the sampling 
rates because they compute the cumulative sum of the distances between all points, causing the trajectory 
similarity to decrease as the sampling rate increases. (2) For the missing ratio, QuadGridSIM also exhibits 
higher robustness than other algorithms, and its effectiveness decreases relatively smoothly as the miss-
ing rate increases (Figure 12b). UMS shows the best stability because it uses an elliptical representation of 
trajectories, indicating that it is particularly robust to extremely sparse trajectories. The similarity error of 
SSPD changes more slowly than that of Hausdorff, indicating that SSPD is more robust in terms of sparse 
sampling rate. This is because SSPD improves upon Hausdorff by taking the mean of point-to-trajectory dis-
tance, rather than the maximum distance. ED, DTW, and Hausdorff change more dramatically as the missing 
rate increases, indicating that the robustness of these two measures is lower than that of QuadGridSIM, UMS, 
LCSS, and SSPD. Our results were in line with the research by Toohey and Duckham (2015), Mariescu-Istodor 
and Fränti (2017), and Gong et al. (2020).

3.6 | Performance evaluation of QuadGridSIM

In this section, we compared the performance between QuadGridSIM and baseline methods from the perspec-
tives of trajectory lengths, dataset sizes, and grid levels. This experiment relies on a top-K similar trajectory query 

F I G U R E  1 2 The influence of the sampling rate includes (a) increasing and (b) missing ratio of the trajectory 
on different similarity measures.
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    |  19LIU et al.

to evaluate the performance of all methods, which is a common and important application for similarity analysis. 
The top K trajectory similarity query is to search K trajectories that are most similar to the trajectory T in space 
based on the similarity measure in a dataset. Besides, in order to validate the performance of QuadGridSIM from 
different aspects, the trajectory similarity measures of baseline methods used at the refining stage include the 
methods with high computational complexity of O(n × m) (i.e., UMS, LCSS DTW, Hausdorff, and SSPD) and the 
computational efficient methods with complexity of O(n) (i.e., ED and FastDTW). All methods use the Grid-cell 
(Gong et al., 2020) as the spatial index in the filtering stage.

3.6.1 | Performance comparison of various trajectory lengths

Figure 13 shows the computational time efficiency of QuadGridSIM, UMS, LCSS, DTW, Hausdorff, SSPD, ED, and 
FastDTW over different trajectory lengths for dataset TD2, which is the timing of similar trajectories queries from 
100 k trajectories. Overall, the time efficiency of QuadGridSIM is approximately one order of magnitude better 
than that of UMS, LCSS, DTW, SSPD, and Hausdorff. This is because QuadGridSIM is optimized with a compu-
tational complexity of O(n), while other methods have a higher complexity of O(n × m). ED is approximately one 
order of magnitude more efficient than QuadGridSIM. As previously verified, however, it has the lowest effective-
ness among the evaluated algorithms. Despite FastDTW being an improved version of DTW with a complexity of 
O(n), its improvement in efficiency is not as significant as that of QuadGridSIM. This is due to that code calcula-
tions are generally more efficient than geographic operations with vector-based representation. Moreover, the 
time efficiency of QuadGridSIM is relatively stable and does not significantly deteriorate as the trajectory length 
increases, unlike the other baseline methods.

3.6.2 | Performance comparison of various dataset sizes

Figure 14 shows the computational time efficiency of the similarity query on different sizes of trajectory datasets. 
The time consumption of all algorithms increases as the number of trajectories increases. The UMS, LCSS, DTW, 

F I G U R E  1 3 Time efficiency comparison of trajectory similarity queries among different methods based on 
100 k trajectories.
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20  |    LIU et al.

SSPD, and Hausdorff algorithm consumes the longest computational time, and the performance of FastDTW is 
approximately four times better than the five measures (UMS, LCSS, DTW, SSPD, and Hausdorff). Except for ED, 
QuadGridSIM demonstrates superior performance and is approximately one order of magnitude faster than the 
other algorithms, regardless of the dataset size.

3.6.3 | Performance comparison of various grid levels

Figure 15 shows the time cost of querying similar trajectories by QuadGridSIM based on the dataset TD2 with 
100 k trajectories encoded on different grid levels. The computational time of QuadGridSIM increases on finer 
grid levels because a finer grid means a greater amount of trajectory codes to be processed. Nevertheless, 
the increasing trend of time cost by QuadGridSIM is relatively stable, and the time cost is much less than the 
other tested similarity measures. QuadGridSIM shows different performance at different grid levels, where 
its computing efficiency is about two orders of magnitude higher than that of baseline methods at low grid 
levels (Levels 7–9), and one order of magnitude higher even at high grid levels (Levels 10–11). Therefore, the 
multiscale characteristics inherent in grid representation offer promising solutions for applications across vari-
ous spatial scales.

4  | DISCUSSION AND CONCLUSION

Previously, diverse trajectory similarity measures have been developed and each method has profound char-
acteristics in particular application scenarios. However, existing methods have difficulty in balancing efficiency 
and effectiveness. On one hand, their high computational complexity and low computational performance make 
it difficult to meet performance challenges when dealing with large-scale trajectory data. On the other hand, it 
is challenging to guarantee effectiveness properties such as directionality and robustness to the sampling rate. 
This study proposes QuadGridSIM, a quadrilateral grid-based method for trajectory similarity analysis, to pro-
vide a high-performance algorithm for trajectory data mining while ensuring effectiveness. Experimental results 

F I G U R E  14 Time efficiency comparison of trajectory similarity queries across all methods based on different 
numbers of trajectories.
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indicated that QuadGridSIM had strong performance and robustness, providing superior solutions to the above 
challenges, and can be applied in application scenarios where high efficiency is in need. To make a direct compari-
son between QuadGridSIM and other commonly used similarity methods, we accounted for five characteristics: 
time complexity, different lengths, directionality, symmetry, and robustness to sampling rate variations. A com-
parison of characteristics has been summarized in Table 4.

Our results are concluded as follows.

1.	 QuadGridSIM provides a significant improvement in performance compared to classical methods. Overall, 
QuadGridSIM is 20–30 times more computationally efficient than UMS, LCSS, DTW, Hausdorff, and 
SSPD, and 6–9 times faster than FastDTW. The performance improvement of QuadGridSIM is due to 
our optimization in two aspects: simplifying the representation of trajectory data through grid coding, 
and reducing the computational complexity of the similarity measure from O(n × m) to O(n). Therefore, 
QuadGridSIM has the potential to provide technical support for data mining and analysis with high 
temporal requirements in massive trajectory datasets.

F I G U R E  1 5 Time efficiency comparison of trajectory similarity queries across all methods at different grid 
levels.

TA B L E  4 Characteristics of trajectory similarity measures.

Similarity measure
Time 
complexity

Different 
length Directionality Symmetry

Robust to 
sampling

QuadGridSIM O(n) ✓ ✓ ✓ ✓

UMS O(n × m) ✓ ✓ ✓ ✓

LCSS O(n × m) ✓ ✓ ✓ ✗

FastDTW O(n) ✓ ✓ ✓ ✗

DTW O(n × m) ✓ ✓ ✓ ✗

SSPD O(n × m) ✓ ✗ ✓ ✓

Hausdorff O(n × m) ✓ ✗ ✓ ✗

ED O(n) ✗ ✓ ✓ ✗
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2.	 QuadGridSIM exhibits effectiveness regarding similarity measures, including the ability to handle trajectories of 
different lengths, directionality, and symmetry, and is robust to the sampling rate. Unlike Hausdorff and SSPD, 
we have optimized the QuadGridSIM to recognize the direction of trajectory motion, ensuring that the similarity 
of trajectories in opposite directions is comprehensively considered. Additionally, during the trajectory encod-
ing process, trajectories with different sampling rates are interpolated into spatially continuous trajectory codes 
(as shown in Figure 6, Level 10), which makes QuadGridSIM more robust to sampling rate than other methods 
such as LCSS, DTW, Hausdorff, and SSPD.

3.	 The multiscale encoding scheme empowers QuadGridSIM to excel in top-K similar trajectory querying and 
multisource trajectory mining. Initially, we employ a coarse-scale coding representation to effectively filter a 
candidate set of similar trajectories from the database, followed by the computation of trajectory similarities 
within this refined candidate set, under a fine-scale representation using QuadGridSIM. This “filter-refine” strat-
egy, rooted in the multiscale property, significantly reduces unnecessary computational overhead and process-
ing time in top-K similar trajectory querying. Moreover, it is crucial to acknowledge the significant variation 
in spatial resolution among multisource trajectories, attributable to differences in localization accuracy and 
sampling intervals. For instance, human walking trajectories typically exhibit a spatial resolution of 5 m, while 
bicycle trajectories encompass 20 m, and taxi trajectories extend to 100 m. QuadGridSIM's multiscale property 
harmonizes trajectory spatial representations at the appropriate grid level, thereby facilitating similarity analysis 
across multisource trajectory data.

Although QuadGridSIM has advantages in terms of robustness and performance, it consumes more storage 
space due to interpolation during the trajectory encoding, especially when the sampling rate is low and the mov-
ing speed is fast. Therefore, it is particularly critical to determine an appropriate grid level based on different 
application scenarios, sampling rates, and positioning accuracy to balance accuracy and data volume (efficiency). 
For example, a grid model with a cell size of 300–1000 m was adopted to represent global flight trajectories 
(Zheng et al., 2019), while a cell size of 20–60 m (road width) was used to analyze taxi trajectories within cities 
(Li, Liu, et al., 2022). In addition, QuadGridSIM does not have triangle inequality and identity. This is because 
QuadGridSIM, like LCSS and EDR, builds a buffer by a distance threshold of points (code dilation) and assumes 
that the points in this buffer satisfy the similarity metric.

Given the characteristics of QuadGridSIM outlined above, we can delineate its applicability and limita-
tions in application scenarios. QuadGridSIM, in general, offers versatility to support a broad spectrum of 
applications, including (1) similar trip recommendations. This involves extracting similar trips based on taxi 
trajectories to provide recommendations for popular routes in an unfamiliar city. (2) Anomalous trajectory 
detection. QuadGridSIM can effectively detect anomalous trajectories that exhibit low similarity to common 
routes derived from historical taxi trajectories. This capability aids in mitigating fraudulent activities, such as 
intentional detours and overcharging. (3) Close contact identification in epidemics. It can also be employed to 
identify the trajectories of individuals at high risk of exposure to epidemic patients, facilitating measures to 
mitigate the spread of pandemics. However, QuadGridSIM predominantly emphasizes spatial similarity mea-
sures, without taking into account the temporal dimension. As a result, gsstSIM (Li, Liu, et al., 2022), which 
effectively measures both spatial and temporal similarity, outperforms QuadGridSIM in scenarios where time 
sensitivity is critical. For instance, while QuadGridSIM may excel in identifying the busiest routes based on 
floating car trajectories, it may not perform as effectively as gsstSIM in pinpointing the specific time of day 
when congestion typically occurs.

Additionally, QuadGridSIM enhances the functional capabilities of Discrete Global Grid Systems (DGGS), 
which are global-scale geographic grid models (Li, McGrath, et al., 2022; Mahdavi-Amiri et al., 2015; Robertson 
et  al.,  2020). Specifically, QuadGridSIM can seamlessly integrate with established DGGS, such as quadrilat-
eral rHEALPix, particularly when dealing with global-scale trajectories, for example, global flight trajecto-
ries. Nevertheless, it should be noted that while we presented the principles of QuadGridSIM based on the 
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quadrilateral grid, it is not difficult to imagine that it can be transformed into triangular and hexagonal DGGS, such 
as Uber's H3 and DGGrid. Because the fundamental functions of Directionality, Similarity, and Symmetry remain 
almost unaffected by the geometry of the grid cells, only the trajectory encoding and dilation operation need to 
be changed. The generality of grid geometry simplifies the extension of QuadGridSIM and enhances its flexibility 
in applications. For example, when performing a similarity analysis of trajectories within the platform's preexisting 
hexagonal DGGS, such as Uber H3, QuadGridSIM can be seamlessly integrated, eliminating the need for quad-grid 
reconstruction.

Given the hot topics in trajectory mining, more research should be conducted in the future. For example, inte-
grating temporal and semantic information will enrich the trajectory similarity measure, making it more compre-
hensive and intriguing. Moreover, as previously mentioned, the discreteness is one core advantage of geographic 
grid models. It is practical to incorporate the QuadGridSIM into a high-performance computing framework, such 
as GPU parallel computing or Spark distributed computing, to accelerate similarity queries and trajectory data 
mining. Additionally, the grid-coding representation of trajectories and the corresponding improved algorithms 
can provide a reference for other trajectory data mining and analysis methods. A trajectory computing and anal-
ysis framework based on geographic grid models is required to meet the ever-increasing demand for real-time or 
near real-time trajectory data applications in various fields.
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