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Utilizing serverless framework for dynamic visualization and 
operations in geospatial applications
Mingke Li, Charles Tousignant, Chiranjib Chaudhuri and Achraf Chabbouh

Research and Development Group, Geosapiens Inc., Quebec City, Canada

ABSTRACT  
While substantial efforts have been invested in the development of 
Discrete Global Grid Systems (DGGS) spatial operations and their 
potential applications in the geospatial domain, it has become evident 
that there is a demand for an efficient and scalable system to handle 
the visualization of large-scale DGGS data. This study demonstrated the 
potential of DGGS in conjunction with the serverless framework for 
dynamic visualization at various resolutions, which is based on data 
storage and effective querying using PostgreSQL integrated into 
Amazon Aurora Serverless. The use of Amazon Web Services (AWS) 
Lambda for on-the-fly generation of hexagon geometries significantly 
reduced the storage requirements and improved the speed of the 
visualization process. In addition, we implemented on-the-fly spatial 
operations including point binning, thresholding, aggregation, and 
neighborhood operations in the DGGS, highlighting the capabilities of 
DGGS in vector and raster processing. The proposed system has shown 
promising results in terms of efficiency, scalability, and adaptability, 
making it a viable solution for large-scale geospatial data processing 
and visualization. Case studies using flood risk data and terrain data 
further illustrate the system’s practical applicability in on-the-fly spatial 
operations and rapid visualization.
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1. Introduction

Geospatial visualization is the process of representing geographical data in a visual format, often 
through interactive graphics, to gain insights into spatial relationships, patterns, and trends. It typi-
cally serves as the final stage in the data analysis pipeline, acting as the interface through which the 
insights and patterns extracted from raw data are conveyed to end-users or decision-makers. In the 
real world, it finds application in diverse fields such as urban planning, environmental monitoring, 
and disaster management, assisting resource allocation, problem-solving, and decision-making 
through spatial context. However, on-the-fly geospatial visualization faces challenges in handling 
vast and dynamic datasets in real-time, ensuring responsive user experiences, and maintaining 
data accuracy.

Recent studies have demonstrated the importance of Discrete Global Grid Systems (DGGS) in 
revolutionizing the processing, analysis, and visualization of geospatial data. As a standard spatial 
reference system adopted by the Open Geospatial Consortium (OGC), DGGS hierarchically par-
titions the Earth’s surface into almost uniform cells, offering a structured geospatial data 
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framework, and facilitating scalable data organization (OGC 2019). Bousquin (2021) emphasized 
the advantages offered by DGGS implementations such as flexibility, scalability, and effective 
data aggregation and visualization, which underscored the application of DGGS in characterizing 
environments. Rawson, Sabeur, and Brito (2021) highlighted how DGGS went beyond grids to pro-
duce accurate and illuminating risk maps, particularly in global maritime risk assessment. A frame-
work for a DGGS geoprocessing language was introduced to facilitate building a Digital Earth 
platform combining various geospatial data sources (Peterson and Shatz 2019). Chaudhuri, Gray, 
and Robertson (2021) introduced a novel flood inundation modeling framework using a big-data 
DGGS and web-GIS platform to improve the accessibility and computational efficiency of flood 
risk models. Bondaruk, Roberts, and Robertson (2020) thoroughly assessed the state of DGGS 
and emphasized the urgent need for fresh methods of data integration, analysis, and visualization 
due to the increasing availability of geospatial data sources. These contributions highlighted the 
capacity of DGGS to provide scalability and adaptability in addressing real-world geospatial chal-
lenges. A comprehensive review of spatial operations and applications within the DGGS context has 
been conducted in Section 2.

Previous research has also demonstrated an interest in the development of visualization systems 
based on DGGS. For example, a simulation – visualization system was developed based on DGGS, 
which integrated statistical conditional simulation, array set addressing, and a visualization plat-
form to achieve efficient storage, computation, and near real-time visualization of spatial data 
(Stough et al. 2020). Particularly, fine-resolution data is generated using a spatial statistical con-
ditional simulation methodology that constrains the simulation output to replicate features of a 
physical model based on scientific knowledge about the structure of the true physical process 
(Stough et al. 2020). The study by Djavaherpour, Mahdavi-Amiri, and Samavati (2017) also pro-
posed a strategy that combines fabrication with DGGS, which offered a way to create models repre-
senting Earth for visualizing datasets. Raposo, Robinson, and Brown (2019) implemented a 
visualization system specifically based on the Quaternary Triangular Mesh (QTM; Dutton 1999), 
to demonstrate the modifiable areal unit problem (MAUP). The system allows users to bin global 
data points with counts or measures of any theme at multiple levels. Users can interactively select 
the binning level and translate the tessellation for visualization on a virtual globe. This demonstrates 
the scaling and zoning aspects of the MAUP with dynamically drawn choropleths and various 
quantile classifications (Raposo, Robinson, and Brown 2019).

Nevertheless, there remains a demand for a scalable visualization system to effectively render 
DGGS data, particularly when confronted with the challenge of handling immense cell geometries 
associated with large-scale datasets. This paper aims to address this need by integrating DGGS with 
the serverless framework for dynamic visualization. We implemented on-the-fly spatial operations, 
such as point binning, thresholding, down-sampling, and neighborhood operations within the con-
text of DGGS, and visualized the analysis results utilizing a serverless framework. To illustrate the 
practicality of our approach, we have conducted two case studies within the domain of flood risk 
management and terrain data management.

The OGC Specification on DGGS does not define a single configuration but rather outlines a set 
of criteria that a DGGS should fulfill. In this paper, we specifically adopted the Icosahedral Snyder 
Equal Area aperture 3 Hexagon (ISEA3H) DGGS for our system. The advantages of the ISEA3H 
tessellation have been previously highlighted in comparison to other DGGS configurations (Sahr, 
White, and Kimerling 2003; White et al. 1998). First, as a polyhedral map projection, the Icosahe-
dral Snyder Equal Area projection minimizes area distortion (White et al. 1998). Second, hexagonal 
grids are characterized by the greatest angular resolution, uniform adjacency, and accurate approxi-
mation of Cartesian distance (Golay 1969; Conway and Sloane 1998; Luczak and Rosenfeld 1976; 
Sahr 2011). Sampling over hexagonal grids offers noticeable advantages because of their uniform 
adjacency compared to other regular grids with rectangular or triangular geometries. Lastly, the 
hexagonal tessellation with aperture 3 benefits smoother transitions between DGGS resolution 
levels than apertures of four or seven (Mahdavi-Amiri, Alderson, and Samavati 2015). The 
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centroid-aligned, aperture 3 hexagonal tessellation ensures that a parent cell’s six vertices are cen-
troids of its child cells (Sahr, White, and Kimerling 2003), leading to the important monotonic con-
vergence characteristic where the representing centroid is infinitely closer to the point to be 
modeled at finer resolutions. The DGGRID library was compiled into our system architecture 
because it has demonstrated promising functionality in constructing grids with desired geometric 
properties (Kmoch et al. 2022; Sahr 2022). The remainder of this paper is arranged as follows. Sec-
tion 2 conducts a comprehensive literature review on DGGS operations and applications. Section 3 
provides an in-depth description of our system architecture. Section 4 describes the quantization 
processes including both the feature and raster dataset. Section 5 demonstrates the spatial oper-
ations that have been implemented within our system. In Section 6, we present two case studies 
within the domain of flooding risk management and terrain data management. Section 7 discusses 
the research and outlines potential directions for future work.

2. Literature review on DGGS operations and applications

2.1. Fundamental operations in DGGS

The fundamental operations mandated by the OGC specification include quantization, spatial 
relation, and interoperability (OGC 2019), forming the solid foundation for various analytical 
processes, visualization techniques, and practical applications of DGGS. Quantization operations 
serve as an essential process aimed at converting diverse geospatial data into a uniform format 
accessible within the context of DGGS. A general understanding of quantization includes dataset 
crawling, conversion into an internal format, integration, aggregation, and quality control, 
among which the key step is the conversion between cell addresses and geographic coordinates 
or among cell addresses. Based on this, previous studies adopted various approaches to quantiz-
ing values of data sources on the DGGS cells depending on the data model and nature of the 
source data, where the cell centroid is commonly used to represent a cell’s value. For the raster 
model, Robertson et al. (2020) extracted the underlying raster value for each DGGS cell centroid 
where the mean value and nearest pixel value were used for continuous data and categorical data, 
respectively. Bilinear interpolation was also applied when quantizing raster data, such as integrat-
ing multi-source terrain data into a standard DGGS framework and resampling GF-1 satellite 
imageries on hexagonal discrete grids (Li, McGrath, and Stefanakis 2021; Ma et al. 2021). A pre-
cise approach for hexagonal pixel modeling was developed to convert hexagonal DGGS cells into 
quadrilateral pixels (Liang et al. 2024). These pixels are then stored as regular rectangles with a 
fixed pattern in any standard format, facilitating the compatibility (Ding et al. 2024). For the vec-
tor model, Li and Stefanakis (2020) explored different types of geo-feature modeling in discrete 
global grids, where geographic coordinates of spatial points were directly converted to the cor-
responding DGGS cell index at a certain resolution, line features were transformed to a sequence 
of DGGS cells where they intersect, and polygons were converted to a group of cells whose values 
were determined by the intersected polygon with dominant area proportions. Robertson et al. 
(2020) further stored the order of cells when modeling line features and identified interior 
and boundary cells when modeling polygons.

Spatial relations in the DGGS context involve cell-level and object-level relation queries. Cell- 
level spatial relation includes sibling navigation and parent–child navigation, which have found 
support in a few open-source libraries like DGGRID and H3 (Sahr 2022; Uber 2019). The efficiency 
of spatial relation queries is greatly influenced by the underlying cell indexing mechanism. For 
instance, hierarchical indexing systems prove advantageous for parent–child relation queries, 
whereas coordinate-based indexing systems facilitate sibling relation queries (Mahdavi-Amiri, 
Alderson, and Samavati 2015). As for object-level relations, query engines tend to be more complex. 
In the context of traditional Geographic Information Systems (GIS), topology is commonly rep-
resented by the Dimensionally Extended 9-intersection Model (DE-9IM; Egenhofer and Herring 
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1990). It is conceivable that this model can be extended to support topology modeling within the 
context of DGGS, though further deliberation is required (Hojati et al. 2022).

Interoperability serves as a pivotal requirement for a mature DGGS acting as a Spatial Data 
Infrastructure (SDI), meaning the system’s capability to communicate with end-users, alternative 
DGGS, or other SDIs through standardized APIs and data formats. Such capability is essential 
for enabling seamless data exchange and collaboration. While advancements have been made in 
enhancing interoperability (Mahdavi-Amiri, Harrison, and Samavati 2016), this aspect remains 
subject to ongoing research and development.

2.2. State-of-the-art DGGS libraries

Various open-source DGGS libraries have been developed, including OpenEAGGR, DGGRID, 
HEALPix, and rHEALPix (Sahr 2022; Gibb 2016; Gorski et al. 2005; OpenEAGGR 2019). HEALPix, 
developed by NASA’s Jet Propulsion Laboratory (JPL), was originally designed to map the sky 
above the Earth’s surface and store background cosmic microwave energy (JPL 2019). Gibb’s 
rHEALPix DGGS was derived from HEALPix by reorganizing the underlying map projection 
into the rHEALPix projection and constructing a DGGS for ellipsoids of revolution based on the 
projection (Gibb 2016). The rHEALPix is particularly useful for latitudinal data analysis due to 
its iso-latitude property (Bowater and Stefanakis 2019). DGGRID and OpenEAGGR are libraries 
that offer end-users the flexibility to select from various DGGS configurations and support cell navi-
gations, such as hierarchical search and neighborhood search (OpenEAGGR 2019; Sahr 2022). 
Additionally, Uber H3 and Google S2 are well-established open-source packages with DGGS capa-
bilities. H3 utilizes an icosahedral hexagonal DGGS with a refinement ratio of seven and includes 
various spatial operators (Uber 2019). On the other hand, Google S2 provides operations for com-
putational geometry and spatial indexing on the sphere, featuring a fully congruent aperture 4 
refinement with square cell shapes (Veach et al. 2017). However, it’s worth noting that H3 and 
S2 exhibit significant variation in the cell area, making them unsuitable for applications requiring 
equal area cells (Kmoch et al. 2022). Equi7 Grid is another attempt to create a global grid, dividing 
the globe into seven zones that align with the continents and defining customized equidistant azi-
muthal projections for each zone (Bauer-Marschallinger, Sabel, and Wagner 2014). Nonetheless, 
there are overlaps between various Cartesian spaces at the boundaries between the zones (Bauer- 
Marschallinger, Sabel, and Wagner 2014).

2.3. Common spatial analysis implemented in DGGS

Prior research has investigated the adaptation and migration of spatial analysis algorithms orig-
inally designed for traditional GIS to the context of Discrete Global Grid Systems (DGGS). Notably, 
researchers have implemented vector-based operations, such as union, intersection, clipping, and 
buffering, in an in-database manner, leveraging set operations as a foundation (Robertson et al. 
2020). Investigations have been conducted into image algebra, including local, focal, and zonal 
operations (Robertson et al. 2020; Li, McGrath, and Stefanakis 2022a), and topographical and 
hydrological analysis algorithms were developed accordingly in the hexagonal DGGS, such as ter-
rain slope, flow routing, and watershed delineation (Li, McGrath, and Stefanakis 2022a; 2022b). In 
addition, cosmological data statistical algorithms were developed in the HEALPix framework, along 
with the basic geometric operations including distance, area, and angle computation (Fryer, Li, and 
Olenko 2020). In certain circumstances involving discrete grids, distance can also be interpreted as 
the number of rings. For example, an inverse distance weighting interpolation technique was uti-
lized to estimate missing temperature data, where the weight was assigned based on the number of 
cells away from the target location (Bousquin 2021).

The hierarchical nature of DGGS makes multi-resolution spatial aggregation a distinctive 
operation. This process involves aggregating data across various levels within the DGGS, allowing 
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for efficient representation and manipulation of geospatial data. In the field of topography, the 
QTM, among the earliest modern DGGS designs, was specifically introduced for the assembly 
and management of global terrain data across various scales (Dutton 1984; 1999). Additionally, 
the Ellipsoidal Cube Map and Crusta were developed to enhance the rendering of global- 
scale terrain data based on quadtrees (Bernardin et al. 2010; Lambers and Kolb 2012). 
Aggregation methods based on mean, maximum, and minimum terrain values were also intro-
duced for specific application scenarios (Li, McGrath, and Stefanakis 2021). A down-sampling 
kernel was defined to facilitate the visualization of internal data representations with efficient 
storage and computation (Stough et al. 2020). Furthermore, DGGS has been employed as bins 
with spherical cells to grid and aggregate point data, thereby facilitating spatial statistics without 
the spatial bias arising from varying cell sizes (Konig et al. 2019; Somveille, Manica, and 
Rodrigues 2018).

2.4. Real-world applications driven by DGGS

In recent years, DGGS has seen growing utilization across diverse applications aimed at addres-
sing real-world challenges, broadly categorized based on their usage in three main areas. First, 
DGGS has been employed as bins with spherical cells to grid and aggregate geospatial data, 
thereby facilitating spatial statistics without the spatial bias arising from varying cell sizes. For 
instance, Konig et al. (2019) integrated plant diversity data in a DGGS framework, demonstrating 
the significance of data resolution. Similarly, Somveille, Manica, and Rodrigues (2018) aggregated 
the global distribution of land bird species on a DGGS framework and explored migratory differ-
ences among terrestrial bird species. Spatial gaps in taxonomic knowledge and expertise were 
explored by mapping taxonomic effort and amphibian diversity on the DGGS, which aimed to 
examine their relationship with economy and biodiversity (Rodrigues et al. 2010). Qiu et al. 
(2022) proposed continuous digital expression of large-scale population spatial disaggregation 
data and improved spatial statistical analysis using DGGS. In addition, a software application 
based on the QTM was developed to bin global data points geodetically, enabling aggregation 
with counts or measures of any thematic content across multiple levels (Raposo, Robinson, 
and Brown 2019). Users can interactively choose the level at which the data are binned by the 
QTM and explore the scaling and zoning characteristics of the MAUP through 
the dynamically generated choropleths presented on the surface of the virtual globe.

Second, DGGS serves as a data fabric for heterogeneous data integration and multi-scale data 
queries due to its cells’ uniform properties, often followed by data mining analysis. Rawson, Sabeur, 
and Brito (2021) integrated multiple maritime datasets, predicting ship grounding occurrences 
through a random forest algorithm within a DGGS. Li, McGrath, and Stefanakis (2022c) explored 
multi-scale flood mapping under climate change scenarios using four machine learning algorithms, 
organizing heterogeneous predictor datasets in DGGS. A combination of DGGS and Artificial 
Neural Network was employed to predict the spatial distribution of hate crimes in the USA, incor-
porating numerous social and economic parameters for enhanced accuracy (Jendryke and McClure 
2019; 2021). Additionally, Eco-ISEA3H established a machine learning-ready spatial database, 
quantizing over 3000 variables from 17 sources in DGGS at multiple granularities for ecometric 
and species distribution modeling (Mechenich and Zliobaite 2023).

Third, because of the discrete nature of DGGS cells, it is possible to realize bottom-up pre-
dictive models such as cellular automata and agent-based modeling in DGGS. For example, 
Hojati and Robertson (2020) coupled cellular automata with DGGS in a distributed database sys-
tem and carried out a case study to model the spread of wildfire events. Kiester and Sahr (2008) 
conducted a hierarchical, multi-resolution cellular automaton using a topology-independent dis-
crete simulation library based on DGGS, where the behavior of a central cell was influenced by 
its neighboring cells, parent cells, and child cells. The study highlighted the effectiveness of cell- 
based simulation techniques with DGGS on a global scale (Kiester and Sahr 2008). While less 
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explored, DGGS-driven agent-based modeling holds promise with well-established neighboring 
navigation rules for grid cells.

3. Description of the architecture

3.1. Backend architecture based on the IDEAS

Our backend data architecture is based on the Integrated Discrete Environmental Analysis System 
(IDEAS; Robertson et al. 2020). The primary aim of the IDEAS is to establish an operational Geo-
graphic Information System (GIS) based on DGGS. This system is specifically tailored for large- 
scale environmental modeling and analysis. Robertson et al. (2020) demonstrated the feasibility 
of such a system by implementing it within a relational database environment, integrating com-
monly used data analytics tools. The IDEAS data model is based on a hybrid relational/key-value 
database approach, consisting of three core sub-models: the spatial data model, the temporal 
data model, and the attribute data model, implemented by five main tables, including base, attri-
bute, temporal lookup, geometry, and metadata tables (Figure 1).

The spatial data model in the IDEAS is based on the ISEA3H DGGS. This model defines the base 
regular polyhedron, cell shapes, subdivision method, and the method for projecting cells onto the 
Earth’s surface. The chosen aperture 3 hexagon grid allows for efficient global-scale processing and 
accurate representation of the Earth’s surface. Here the base table serves as the main table for all cell 
objects and their associated values, while the geometry table complements it by providing hexagonal 
geometry information. The temporal data model, implemented by the temporal lookup table, 

Figure 1. The database structure of (a) the Integrated Discrete Environmental Analysis System (IDEAS), and (b) a modified version 
of our system.
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enables the representation of time durations, accommodating various levels of nesting. The attri-
bute data model stores cell-object attributes as key/value pairs, including thematic, topological, 
and measurement data, where the attribute table and metadata table provide semantic interpret-
ations of the attribute keys and incorporate dataset-level information.

Different from the IDEAS implementation, our system adopts an on-the-fly approach for gen-
erating the base table and DGGS cell geometries through a serverless setup, based on the user’s view 
extent, rather than storing them in the database (Figure 2). Furthermore, within the backend data-
base, we have pre-calculated and stored the neighbor table, which records neighborhood relation-
ships, and the hierarchy table, which records parent–child relationships (Figure 1). The resolution, 
in conjunction with the cell address, functions as the primary key or foreign key within the system 
to facilitate the joining of various tables, including the base table, attribute table, neighbor table, or 
hierarchy table (Figure 1). The rest of Section 3 elaborates on the detailed description of the specific 
components comprising our system architecture.

3.2. Storage and parallel querying with PostgreSQL integrated on Amazon Aurora 
Serverless

PostgreSQL is a robust and open-source relational database management system (RDBMS) known 
for its advanced features, extensibility, and adherence to SQL standards (PostgreSQL 2023). It has 
gained significant popularity for its capabilities in handling complex data management tasks, sup-
porting both structured and unstructured data, and providing extensibility through custom func-
tions and procedural languages. PostgreSQL has been used as a versatile and scalable database 

Figure 2. The overall architecture of our system implementation.
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solution for various applications from small projects to large enterprise systems. Amazon Aurora 
stands out as a cloud-native RDBMS that fully embraces the power of PostgreSQL compatibility, 
and Amazon Aurora Serverless is an on-demand, autoscaling configuration for Amazon Aurora 
(Amazon 2023).

Our implementation is based on the integration of PostgreSQL and Amazon Aurora Serverless, 
which combines the strength of PostgreSQL with the scalability and resilience of the cloud. Specifi-
cally, attribute tables, neighbor tables, and hierarchical tables across various resolutions were stored 
in the PostgreSQL integrated into Amazon Aurora Serverless (Figure 2). Within the neighbor table, 
the fields ‘center’ and ‘neighbor’ correspond to the DGGS cell indices of the center cell and its 
neighboring cells, respectively. The field ‘norder’ has integers denoting the order of the surrounding 
cells, ranging from 1 to 6. In the hierarchy table, the ‘parent’ and ‘child’ fields represent DGGS cell 
indices for the parent cell and its child cells, respectively. The ‘corder’ field also has integers indi-
cating the order of the child cells, starting from 0 to 6, with the center-aligned child cell assigned an 
order of 0. Both the neighbor table and hierarchy table are generated at various DGGS resolutions 
using the DGGRID library (Sahr 2022). The process of creating the attribute table, which involves 
converting raw data into DGGS cell values, is explained in Section 4. We pre-calculated the hier-
archical tables, neighborhood tables, and attribute tables as static relations stored in the PostgreSQL 
integrated on Amazon Aurora Serverless in this stage of development. They are relatively small in 
size compared to the DGGS geometries and are frequently utilized in diverse spatial operations. 
With them pre-calculated, the ‘spatial operations’ are essentially a set of join-operations of relations 
based on the DGGS cell indices, rather than relying on any topological or geometric computations 
within the database. Storing them statically ensures stable and efficient performance. The query per-
formance is enhanced by the parallel query capabilities enabled by PostgreSQL-compatible Aurora 
Serverless (Figure 2), which facilitates operations such as table joining, grouping, and generating 
descriptive statistics. These operations were essential for processes such as point binning, up- 
sampling, and down-sampling.

3.3. Parallel processing on serverless AWS Lambda

Our system leverages the serverless framework, which is compatible with various cloud platforms 
such as Google Cloud, Microsoft Azure, and Amazon Web Services (AWS) Lambda. In our 
implementation, we specifically employed AWS Lambda. AWS Lambda is a serverless computing 
paradigm, offering a robust approach to parallelization and enabling efficient task processing across 
concurrent executions (Baldini et al. 2017). The AWS Lambda functions operate in an event-driven 
manner, automatically scaling in response to triggers like Application Programming Interface (API) 
requests or data updates (Klems 2018). As events occur, AWS Lambda dynamically provisions con-
tainers to handle parallel requests, ensuring swift execution. Concurrency in AWS Lambda allows 
multiple instances of a function to operate concurrently, dependent on incoming events and confi-
gured concurrency settings. AWS Lambda also provides fine-grained control over concurrency, 
enabling users to set the number of simultaneous executions based on specific workload require-
ments (Klems 2018). This automatic scaling capability ensures adequate resources for concurrent 
execution, minimizing costs and optimizing resource usage (Baldini et al. 2017). AWS Lambda’s 
serverless architecture, characterized by event-driven scalability and fine-tuned parallelization, 
stands as a powerful choice for cost-effective and efficient parallelized serverless computing 
(Shafiei, Khonsari, and Mousavi 2022).

In our implementation, AWS Lambda was used in two stages of our workflow (Figure 2). 
First, AWS Lambda operates as a singular instance responsible for forwarding queries to the 
Aurora PostgreSQL database. The architecture initially facilitated querying in parallel on a 
per-tile basis. However, we had to consolidate the requests and submit them as a single 
query because the pricing model of the database was designed as a charge per query, despite 
the potential increase in latency. Second, AWS Lambda was employed to dynamically 
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generate hexagon geometries for tiles intersecting the current user view. These geometries 
were generated on-demand in the geoJSON format and cached in AWS S3. When caching 
hexagon geometries, the cost-effectiveness of AWS S3 makes it well-suited for caching fre-
quently accessed, static geometries, resulting in faster retrieval times. In other words, geome-
tries were swiftly created by AWS Lambda in parallel instead of being stored in the static 
PostgreSQL database. To achieve this, we compiled the DGGRID library to run on 
AWS Lambda. To ensure portability and seamless integration with the AWS Lambda 
environment, we encapsulated the execution of the DGGRID command within a Docker con-
tainer hosted on AWS Lambda. This approach eliminates the necessity to manage external 
dependencies or concerns with environmental variations. The use of a serverless setup con-
serves significant storage space within the database and enhances the speed and efficiency of 
the visualization process. Table 1 provides a summary of the data sizes for ISEA3H DGGS 
geometries all over the globe at resolutions ranging from 0 to 17, showcasing the storage 
requirements that would be incurred if these geometries were to be stored in the PostgreSQL 
database. For ISEA3H DGGS where the refinement ratio is three, the size of geometry data 
approximately triples at the next finer resolution level (Table 1).

While the Hypertext Transfer Protocol (HTTP) requests serve as a prominent example of 
event-driven triggers for AWS Lambda functions in our study, it is important to note that 
AWS Lambda can effectively handle various other event sources, including AWS S3 events, 
DynamoDB feeds, Amazon Simple Notification Service (SNS) notifications, and more. Here 
we emphasize the use case of HTTP requests because it closely aligns with the specific require-
ments of our system architecture and the intended functionality of the application. Although the 
managed PostgreSQL Aurora instance effectively remains active, it operates according to the 
principles of Amazon Aurora Serverless, where scaling is likewise dictated by demand. This 
means the database scales up or down as necessary based on incoming requests, following a 
pay-as-you-go approach. The underlying idea is that charges should only apply to resources 
that have been used. The Amazon Aurora Serverless offers an auto-pause feature, allowing data-
bases to be paused when not in use. This feature helps save costs by eliminating charges for 
unused capacity during idle periods. Compared to traditional provisioned PostgreSQL instances, 
where resources remain static regardless of usage and are allocated based on peak demand, Ama-
zon Aurora Serverless has significant cost optimization benefits by adjusting resource consump-
tion according to the workload.

Table 1. Summary of the data sizes for ISEA3H DGGS geometries all over the globe at various resolutions if stored in the 
PostgreSQL database.

Resolution Cell count Data size

0 12 2.8 KB
1 32 7.5 KB
2 92 21.6 KB
3 272 64.0 KB
4 812 191.1 KB
5 2432 572.2 KB
6 7292 1.4 MB
7 21872 4.3 MB
8 65612 12.8 MB
9 196832 38.5 MB
10 590492 115.4 MB
11 1771472 346.2 MB
12 5314412 1.0 GB
13 15943232 3.0 GB
14 47829692 9.1 GB
15 143489072 27.4 GB
16 430467212 82.2 GB
17 1285401632 245.3 GB
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3.4. Dynamic vector tile-based visualization for DGGS

Our system supports dynamic visualization based on the Google Maps tiling scheme, as shown in 
Figure 2. The Google map tiling scheme relies on the Web Mercator projection, where the world 
is divided into square tiles, each represented by a unique x, y, and zoom level. This tiling scheme 
allows for efficient rendering and display of map data at various zoom levels. Initially, the system 
captures the view extent via the user interface, which is implemented using Mapbox (Mapbox 
2023). Based on the view status of the user, the relevant pre-defined vector tiles are determined. 
If hexagonal DGGS cells contained within these vector tiles have not been previously stored in 
AWS S3, they are generated in parallel for each tile using the DGGRID library compiled within 
AWS Lambda, with the output in geoJSON format. In other words, each tile within the current 
view serves as a unit for parallel processing, ensuring that at each tiling scheme level, with a cor-
responding fixed DGGS level, the number of DGGS cells within each tile remains constant and 
quantifiable. This uniform distribution guarantees an even workload for each thread in parallel 
processing. These newly generated geometries are combined with any cached geometries in AWS 
S3 if available, resulting in a single file that stores both geometry information and DGGS cell 
indices. The cell indices are used to extract values calculated by in-database operations in 
AWS Lambda, where tables are joined based on the common cell indices (e.g. DGGIDs) and 
extracted values are used for symbology. Finally, cell geometries are joined with the cell values 
for user-end visualization.

4. Data preparation

4.1. Quantization of feature dataset

In the current developmental stage of our system, our focus is primarily on modeling spatial 
points, or centroids of spatial polygons. We perform a direct conversion of their geographic 
coordinates into the corresponding ISEA3H DGGS cell indices, at a predetermined resolution, 
using the DGGRID library (Sahr 2022). To facilitate point binning analysis, a coarser DGGS res-
olution relative to the point density is chosen, which allows the grouping of multiple points 
together for subsequent summarization and analysis. The specific DGGS resolution used to 
aggregate point data depends on various factors such as thematic attributes, point density, 
and the purpose of analysis and visualization. This aligns with the concept of the modifiable 
areal unit problem in geography, where the outcomes of data aggregation are influenced by 
the mapmaker’s decision regarding the choice of modifiable areal unit for their analysis. Differ-
ent criteria for determining the aggregation level can lead to different outcomes in analysis and 
visualization.

4.2. Quantization of raster dataset

For the raster dataset, we employed the largest-share principle in our quantization algorithm for 
continuous data such as elevation and temperature. As shown in Figure 3, hexagonal cells receive 
a combination of intersected pixel values with corresponding weights. The weights are determined 
based on the area of intersection, where pixels with larger intersected areas gain higher weights in 
influencing the cell’s final value. For example, in Figure 3, the quantized value of the colored hex-
agonal cell is calculated as:

vhex =


wini (1) 

wi =
Si

Shex
(2) 
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where ni is the original pixel value, wi is the corresponding weight, Si is the intersected area of the 
certain pixel, and Shex is the hexagonal cell area. This is equivalent to the bilinear interpolation when 
the hexagonal cell’s centroid aligns with the pixel vertex, and the cell is uniformly divided by four 
pixels. The DGGRID library was used when generating hexagon geometries in the raster quantiza-
tion process (Sahr 2022).

5. On-the-fly spatial operations

5.1. Point binning and spatial statistics

Point binning involves aggregating point feature data using the ISEA3H DGGS cells as spatial unit 
bins, applying a specified value aggregation rule. Values within each hexagonal cell are calculated 
from the attribute values of original point features falling within that cell, utilizing statistics such 
as mean, max, min, deviation, range, count, density, or more sophisticated calculations (Figure 4). 
The calculation of the binned value can be defined as:

vbin = F(v1, v1, . . . , vn) (3) 

where v1 to vn are the original point values within the target bin, n is the number of points, and F 
defines the function to be applied to the original point values, such as mean, max, min, count, etc. 

Figure 3. Quantization of raster with continuous data on the ISEA3H DGGS.

Figure 4. Illustration of point binning through averaging values on the ISEA3H DGGS at resolution 9.
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Thresholding is an example of a post-point binning operation, enabling the filtration of specific 
hexagonal cells that meet particular criteria. As illustrated in Figure 4, to implement the process, 
the geographic coordinates of point features were initially converted to DGGS cell addresses at a 
certain DGGS resolution. This resolution is pre-determined based on both the spatial scale of 
the visualization scene and the original density of the point data, which can vary across different 
usage scenarios. Subsequently, the DGGS cell values were computed by grouping the data based 
on their cell addresses following a certain rule at the determined DGGS level. This approach 
replaces the point-in-polygon spatial query with an efficient group-by operation in the database, 
improving the processing speed and overall performance of the process.

5.2. Neighborhood operations on quantized datasets

Neighborhood operations aim to calculate a new value for a target cell by taking into account the 
values of its six directly connected neighbors. While the specific equation may vary depending on 
the use case, it can generally be conceptualized as a convolution kernel applied to the center cell in 
conjunction with its six neighbors. The overarching calculation of the center cell value can be 
defined as:

vc =
7

i=1
wivi (4) 

where vi is the value of the original cell, wi is the corresponding weight of the cell, and i ranges from 
1 to 7 representing the center cell and its six neighbors. Figure 5 illustrates the application of Sobel 
kernels on hexagonal grids along three axes, employed for edge detection on a surface in three 
directions. The numbers displayed on the cells indicate the weight assigned to each specific cell 
(He et al. 2008). Vleugels and Palmblad (2020) showcased the application of the Gaussian smooth-
ing filter on hexagonal grids in Cartesian coordinates. Figure 6 depicts the adjacent hexagonal cells 
in Cartesian coordinates in units of the hexagon side length. The weight of each hexagonal cell is 
computed based on the Gaussian function:

w(x,y) =
1

2ps2 e− (x2+y2)/2s2
(5) 

where x and y are Cartesian coordinates of hexagonal cells in units of hexagon side length, and σ is 
the standard deviation of the Gaussian distribution. Neighborhood operations heavily depend on 
the neighbor table stored within the PostgreSQL database. This table, established through queries, 
determines the neighboring cells for each cell at a specific resolution. Subsequently, these cells are 
joined with the attribute table, facilitating the following calculations.

Figure 5. Sobel kernel on hexagonal grids along (a) i axis, (b) j axis, and (c) k axis.

12 M. LI ET AL.



5.3. Hierarchical operations on quantized datasets

In this study, we explored the aggregation operation within the context of DGGS across resolution 
levels, assuming that data has already been quantized in DGGS at a specific level. Aggregation refers 
to the combination of data at coarser resolutions. The ISEA3H schema guarantees that a parent cell 
has one central child cell and six non-central child cells at the next finer resolution. In this schema, 
the central child cell’s centroid aligns with the parent cell’s centroid, and the centroids of the non- 
central child cells align with the parent cell’s vertices (Figure 7). Aggregation operations extensively 
rely on the hierarchical table stored within the PostgreSQL database. This table is instrumental in 
identifying the parent cells or child cells associated with a given cell through queries, and these cells 
are joined with the attribute table, allowing for subsequent calculations to be conducted. When 
aggregating continuous data, the parent cell combines values from its seven child cells, with the cen-
tral child cell having three times the weight of the non-central child cells (Figure 7). The value of the 
parent cell is computed using the formula:

vp = wcenv0 + wnon− cen
6

i=1
vi (6) 

Figure 6. Hexagonal cells in Cartesian coordinates in units of hexagon side length.

Figure 7. Illustration of down-sampling kernel of continuous data.
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where wcen =
1
3 

represents the weight of the central child cell, wnon− cen =
1
9 

represents the weight of 
the non-central child cells, v0 is the value of the central child cell, and v1to v6 are the values of the 
non-central child cells.

6. Case study

6.1. Visualization of aggregated building-loss data and associated thresholding

Building risk visualization is a crucial aspect of urban planning and disaster management, which 
involves assessing the vulnerability of buildings to various hazards such as earthquakes, floods, 
and fires, and representing such information clearly and intuitively. In this case study, we employed 
our system to visualize building loss, flood depth, and associated thresholding resulting from flood 
hazards around the southern Quebec area in Canada in an on-the-fly manner. The original building 
loss data consisted of polygons and was prepared by Geosapiens Inc.

In our context of flood hazard and loss visualization, buildings are assigned DGGS cell indices 
(i.e. DGGIDs) based on the geographical locations of their centroids. The associated building- 
specific hazard risk levels are pre-calculated and stored in the PostgreSQL database. It included 
the water depth in meters of 12 return period scenarios (return period of 2, 5, 10, 20, 25, 50, 
100, 150, 200, 500, 1000, and 1500 years), average annual loss, and geometry information of each 
building. To dynamically visualize building risk on a web map, we used point binning and spatial 
statistics, as previously described in Section 5, to aggregate and summarize the flood depth and 
mean annual loss values of buildings within each DGGS cell at a specific level. In our case, we 
defined the DGGS resolution r = t + 5, where t represents the vector tile level in the current 
user’s visualization scene. It should be noted that, in this case study, the chosen DGGS resolution 
was for illustration purposes and different criteria can lead to distinct outcomes in analysis and 
visualization. Our primary focus was to demonstrate our system’s capability of point binning 
and dynamic visualizations, instead of exploring the MAUP in our system.

As explained in Section 3.4, vector tiles are dynamically generated via the serverless AWS Lambda 
function on-demand, based on the current user view area, incorporating the fundamental DGGS geo-
metry required for visualization. During user interactions with the map interface, a backend query is 
dispatched. This query, which encapsulates the user’s defined view area and zoom level, prompts the 
serverless AWS Lambda function to craft vector tiles for visible DGGS cells within the defined extent. 
Concurrently, the AWS Lambda function dispatches a query to the PostgreSQL database utilizing the 
DGGIDs of these visible cells. The database subsequently responds with the flood depth and building 
loss data corresponding to the requested cells. The AWS Lambda function then undertakes the task of 
incorporating the DGGS geometry from the freshly generated vector tiles with the flood depth and 
building loss information acquired from the PostgreSQL database. This integrated dataset is then 
transmitted to users, facilitating the dynamic visualization of flood depth and building loss. Our 

Table 2. Summary of ISEA3H DGGS cell information and hexagon geometry generation timing for each vector tile across various 
levels.

Vector 
tile level

DGGS 
level

DGGS cell 
area (km2)

Average 
number of 
DGGS cells

Average time of 
intersecting bounding 

box (ms)

Average time of 
creating hexagons 

(ms)

Total time of hexagon 
geometry generation 

(ms)

7 12 95.98 474 115 1623 1738
8 13 31.99 368 119 1234 1353
9 14 10.66 278 116 932 1048
10 15 3.55 211 119 735 854
11 16 1.18 159 117 613 730
12 17 0.39 120 120 512 632
13 18 0.13 89 118 435 553
14 19 0.04 68 117 370 487
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system also facilitated the thresholding operations on the flood depth data. It involved querying 
buildings within each DGGS cell based on common DGGIDs, followed by an additional filter applied 
to the query results based on the values of flood depth. The remaining buildings after the filter were 
then passed to the visualization pipeline. Table 2 provides a summary of ISEA3H DGGS cell gener-
ation information across various vector tile levels. It includes the vector tile level, associated ISEA3H 
DGGS level, DGGS cell area, the average number of DGGS cells per tile, the average time to retrieve 
the intersected bounding box, the average time to create hexagon geometries, and the total time for 
hexagon geometry generation. Specifically, retrieving the intersected bounding box has a consistent 
response time regardless of resolution (Table 2). Requests for hexagon geometry creation are sent in 
parallel based on the number of vector tiles in the current user view. The average time for these par-
allel requests increases at finer levels due to the higher number of DGGS cells per tile (Table 2). It 
should be noted that the reported geometry generation time refers to the initial generation. Once gen-
erated and cached, retrieval from the S3 cache takes about 200 ms.

Figure 8 shows the application interface for building risk visualization. Figure 8(a) illustrates the 
mean average annual loss for a return period of 50 years within the current user view, with the 

Figure 8. The application interface of building risk visualization: a. mean average annual loss for a return period of 50 years at 
ISEA3H DGGS level 15, and b. total count of buildings with flood depths greater than 45 cm for a return period of 200 years at 
ISEA3H DGGS level 13, within the current user view.
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vector tile level of 10 and the DGGS level of 15. Figure 8(b) illustrates the total count of buildings 
with flood depths greater than 45 cm for a return period of 200 years within the current user view, 
where the vector tile is at level 8 and the DGGS is at level 13. Users can also query the number of 
flooded buildings, mean average annual loss, and total average annual loss for each hexagon bin via 
the interactive pop-ups (Figure 8).

6.2. Visualization of the MERIT DEM dataset at multiple resolutions

The Multi-Error-Removed Improved-Terrain (MERIT) Digital Elevation Model (DEM) was cre-
ated by eliminating various error components, including absolute bias, stripe noise, speckle 
noise, and tree height bias, from previously available spaceborne DEMs, such as SRTM3 v2.1 
and AW3D-30 m v1 (Yamazaki et al. 2017). It provides terrain elevations at a 3-arcsecond resol-
ution, approximately 90 m at the equator, and covers land areas between 90° N and 60° S (Yamazaki 
et al. 2017). In this case study, we visualize the MERIT DEM, along with the results of down- 
sampling and neighborhood operations, within the context of a DGGS vector tile framework.

The original MERIT DEM raster data were quantized on the ISEA3H DGGS at level 12 following 
the largest-share principle detailed in Section 4.2. This data was organized within a structured attri-
bute table with columns for DGGS cell indices (i.e. DGGIDs), resolution, and the corresponding 
DEM values. We first implemented the dynamic down-sampling operations using the MERIT 
DEM and realized the on-the-fly visualization of the outcomes. In this process, seven child cells 
were first determined by querying the hierarchical table, associated values were collected by joining 
the attribute table, and finally, the DEM value of each cell at the next coarser resolution was com-
puted following Equation 6, where the central child cells triple the weight of the non-central child 
cells. After the computation of aggregated values for each DGGS cell, these values are subsequently 
integrated into the visualization process, as previously detailed. Figure 9(a) presents the down- 
sampled DEM at level 6 based on quantized data at DGGS level 12.

Furthermore, we integrated on-the-fly Sobel and Gaussian filters into our system to process 
MERIT DEM data and facilitate dynamic visualization. The procedure included identifying the 
neighboring cells of each central cell by querying the neighbor table at a certain resolution level, join-
ing the attribute table based on the DGGIDs, applying the designated filter kernel, and integrating it 
into the visualization pipeline. The Sobel and Gaussian filter kernels applied in this case study were 
derived from the previous research, as explained in Section 5.2. We applied the Sobel filters along 
three hexagonal axes and the Gaussian filter with σ = 1 on the quantized MERIT DEM. The Gaussian 
kernel has been normalized so that the sum of the kernel weight equals 1. Figure 9(b–d) visualize the 
Sobel filtering results along the i, j, and k axis, respectively, on DGGS resolution 6. Figure 9(e) shows 
the Gaussian filtering results with σ = 1 on DGGS resolution 6.

7. Discussion and future directions

This study demonstrated the potential of DGGS in conjunction with serverless approaches for 
dynamic vector tile-based visualization. DGGS provided a uniform and scalable framework for 
geospatial data, enabling efficient data processing and visualization. The integration of serverless 
AWS Lambda further enhanced the system’s scalability and adaptability, allowing for efficient par-
allel processing and on-the-fly operations. This can also be easily applied on other platforms such as 
Google Cloud and Microsoft Azure. We adopted PostgreSQL for data storage and querying, which 
has proven effective, particularly in handling complex data management tasks and supporting both 
structured and unstructured data. Integrating PostgreSQL with Amazon Aurora Serverless made 
our system suitable for large-scale applications. The dynamic vector tile-based visualization 
approach proposed in this study has shown promising results in terms of efficiency and adaptability.

Specifically, the use of AWS Lambda for on-the-fly generation of hexagon geometries signifi-
cantly reduced the storage requirements. In this study, we intended to minimize storage by 
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adopting on-the-fly generation of geometries, even though this adds extra computational workload 
when processing queries. While pre-storing offers faster retrieval, it consumes significantly more 
space and exhibits limited scalability with sizable datasets. Furthermore, since the geometries are 
exclusively utilized for visualization rather than any DGGS operations, it is unnecessary to store 
an extensive volume of geometries permanently in the database. In addition to the storage 
efficiency, our system also ensures the query processing speed, overall system scalability, and sim-
ultaneously responsive visualization for all users. Initially, query processing times may be prolonged 
as information is computed at runtime through on-the-fly generation. Nevertheless, the scalability 
of AWS Lambda and the performance capabilities of Amazon Aurora Serverless can facilitate faster 
query processing, which can further benefit from cached results within AWS S3, reducing the need 
for repetitive computations. Moreover, the system can dynamically adjust its scale in response to 
varying workload demands, using combinations of services such as AWS Lambda, Amazon Aurora 
Serverless, and AWS S3. Lastly, our system can handle multiple users’ view extents simultaneously 
and ensure accurate and responsive visualization for all users by tiling, multi-threading, and cach-
ing. By partitioning the data space into tiles, every user only asks for the tiles necessary for their 
view, thus minimizing data transfer and processing per user. AWS Lambda was used to enable 

Figure 9. Visualizations for a. aggregation, b. Sobel filter along i axis, c. Sobel filter along j axis, d. Sobel filter along k axis, and 
e. Gaussian filter applied to the MERIT DEM on ISEA3H DGGS resolution 6.
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multi-threaded generation on the server side, and different users can have DGGS geometries gen-
erated in parallel, which speeds up overall response time. In addition, frequently accessed geome-
tries are also cached in the AWS S3 on the server side, which prevents redundant generation when 
users request similar views.

Although scalable geospatial visualization was a central focus of our research, we also managed 
to implement quantization, neighborhood operations, and hierarchical operations, aligning with 
the fundamental operations emphasized by OGC (OGC 2019) and enabling dynamic visualization 
of the operation outcomes. Our use of PostgreSQL for storing static tables and the on-the-fly gen-
eration of geoJSON by the serverless AWS Lambda function reflects the compatibility of main-
stream RDBMS and geometry formats in contemporary SDI, suggesting the potential 
interoperability of our system. The case studies presented in this paper demonstrated the practical 
applicability of the proposed system. The visualization of the building-loss data set showcased the 
system’s capability to handle complex geospatial data and provide intuitive and informative visu-
alizations. The visualization of the MERIT DEM dataset and associated aggregation and neighbor-
hood operations further demonstrated the system’s efficiency in supporting on-the-fly operations 
and adaptability in handling large-scale geospatial data.

While this study has shown promising results, several areas are worth further investigation. One 
potential area of research is the extension of the system to support other types of geospatial data, such 
as 3D data and time-series data (Robertson et al. 2020). This requires the development of new algor-
ithms and techniques for data processing and visualization. Another potential area of research is the 
optimization of the system’s performance. While the use of serverless AWS Lambda has significantly 
improved the system’s scalability, there may be further opportunities for optimization, particularly in 
terms of data processing and querying. In our implementation, we pre-calculated and stored the attri-
bute table containing quantized data values, the neighborhood table containing sibling navigation 
information, and the hierarchy table storing parent–child navigation information within PostgreSQL. 
The capacity of AWS Lambda is dynamically adjusted based on the workload, and AWS Lambda 
allows configuring the amount of memory allocated to each function, which also affects the CPU allo-
cation and performance. Thus, these calculations can potentially be performed on the fly based on the 
current user view, as long as the computation remains within the serverless AWS Lambda’s capacity. 
Furthermore, the incorporation of machine learning and artificial intelligence techniques can enhance 
the system’s capabilities in data analysis and predictive modeling (Li, McGrath, and Stefanakis 2022c; 
Hojati and Robertson 2020). This involves the development of new models for geospatial data analysis 
as well as the incorporation of existing machine learning and artificial intelligence tools.
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