
International Journal of Applied Earth Observations and Geoinformation 113 (2022) 102985

1569-8432/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Multi-resolution topographic analysis in hexagonal Discrete Global 
Grid Systems 

Mingke Li a,*, Heather McGrath b, Emmanuel Stefanakis a 

a Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada 
b Canada Centre of Mapping and Earth Observation, Natural Resources Canada, Ottawa, Canada   

A R T I C L E  I N F O   

Keywords: 
Discrete Global Grid Systems 
Topographic analysis 
Multi-resolution 
Map algebra 

A B S T R A C T   

Discrete Global Grid Systems (DGGS) have been increasingly adopted as a standard framework for multi-source 
geospatial data. Previous research largely studied the mathematical foundation of discrete global grids, devel-
oped open-source libraries, and explored their application as data integration platforms. This study investigated 
the multi-resolution terrain analysis in a pure hexagonal DGGS environment, including descriptive statistics, 
topographic parameters, and topographic indices. Experiments across multiple grid resolutions were carried out 
in three study areas with different terrain roughness in Alberta, Canada. Five algorithms were proposed to 
calculate both the slope gradient and terrain aspect. A cell-based pair-wise comparison showed a strong positive 
correlation between the gradient values as calculated from five algorithms. The grid resolutions as well as the 
terrain roughness had a clear effect on the computed slope gradient and topographic indices. This research aims 
to enhance the analytical functionality of hexagonal DGGS to better support decision-making in real world 
problems.   

1. Introduction 

Geographic grid systems emerged as consistent structures to fulfill 
the needs of digitizing, modeling, and organizing heterogeneous geo-
spatial elements in the real world (Foster et al., 2001). A geographic grid 
is used to abstract the geographic space into a mathematical space where 
algorithms, aggregations, and statistics can be applied, and a geographic 
grid system normally consists of a sequence of geographic grids with 
different granularities. Discrete Global Grid Systems (DGGS) are a 
standard of Earth reference grid systems, documented by the Open 
Geospatial Consortium (OGC) and International Organization for Stan-
dardization (ISO) 19170-1:2021 (ISO, 2021; OGC, 2017). DGGS offer a 
mathematical, hierarchical tessellation of the Earth’s surface by almost 
identical cells without any overlaps or gaps, along with cell indices, and 
demonstrate benefits in modeling and analyzing geospatial data by their 
interoperability and parallel-computation potentials (Alderson et al., 
2020; Mahdavi-Amiri et al., 2015). 

One of the earliest studies on DGGS was the Geodesic Elevation 
Model (GEM) which was used to access, assemble, and encode point 
elevation data in a triangular global grid framework (Dutton, 1984). A 
simpler structure, the Quaternary Triangular Mesh (QTM), was 

proposed later to support the needs of map generalization (Dutton, 
1999). Examples of open-source DGGS libraries developed in recent 
years include the H3 (Uber, 2017), OpenEAGGR (OpenEAGGR, 2017), 
and DGGRID (wrapped as open-source libraries in other programming 
languages such as the dggridR library in R programming; Barnes and 
Sahr, 2017). DGGS are discrete and hierarchical, with a deterministic 
cell coverage of locations at a certain resolution. Thus, DGGS have been 
increasingly used as a standard framework to integrate heterogeneous 
spatial data in recent literature. For example, Li et al. (2021) used a 
DGGS to integrate multi-source terrain data and set the stage for a na-
tional elevation service in Canada. Maritime risk maps were created by 
machine learning algorithms using a DGGS as the data integration 
structure (Rawson et al., 2021). In addition, analytical operations in 
DGGS were investigated in a few studies. An integrated environmental 
analytics system was designed based on a DGGS and revealed its ability 
in dynamic environmental modeling, where operations such as map 
algebra, set operations, buffering, and network analysis were explored 
(Robertson et al., 2020). A QTM-based point data aggregation and 
rendering platform was developed and origin–destination flow visuali-
zation techniques were performed upon it (Raposo et al., 2019; Raposoa, 
2019). Crusta, a virtual globe was produced based on a 30-sided 
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polyhedron, providing the dynamic shading of terrain surface at an 
arbitrary desired resolution (Bernardin et al., 2011). 

In this paper, we aimed to conduct multi-resolution terrain analysis 
in an Icosahedral Snyder Equal Area Aperture 3 Hexagonal Grid 
(ISEA3H) DGGS. Key advantages of the ISEA3H tessellation have been 
noted previously by comparing it to other DGGS configurations (Sahr 
et al., 2003; White et al., 1998). Particularly, in terms of the topographic 
analytics on terrain data, hexagonal cell geometry can eliminate the 
ambiguity of the cell neighborhood and weighting scheme of the focal 
spatial operations, such as the slope gradient computation, due to its 
uniform adjacency (Li et al., 2021). Aperture 3 means that the area ratio 
between a parent cell and a child cell at two successive levels is three. 
Compared to aperture 4 or aperture 7 hexagonal tessellation, aperture 3 
guaranteed the monotone convergence regarding the point displace-
ment, which means that a finer resolution resulted in less displacement 
between the original point location and the corresponding cell centroid 
location. Previous research examined the algorithms to compute hy-
drological geomorphometry parameters on regular grids other than 
rectangular ones. Wang et al. (2020) showed the process of extracting 
valley lines on hexagonal grids and compared the results to square grids, 
concluding that hexagonal grids had a greater ability to maintain the 
detailed shape and location accuracy, while having a weaker capability 
to extract valley lines among flat regions. A regular hierarchical surface 
model introduced by Wright (2017) generalized the hydrological 
parameter computation onto hexagonal and triangular grids, and 
incorporated a scaling function to form a pyramid framework. 

We developed four categories of analytical functions (introduced in 
Section 2): 1) focal statistics, 2) zonal statistics, 3) topographic param-
eters including slope gradient and aspect, curvature, and hill-shade, and 
4) topographic indices including Terrain Roughness Index (TRI) and 
Topographic Position Index (TPI). We also classified our developed 
operations by referring to Tomlin’s map algebra model and extending 
the architecture into the DGGS context, namely the operations on indi-
vidual locations (i.e., local operations), operations within neighbor-
hoods (i.e., focal operations), and operations within zones (i.e., zonal 

operations; Tomlin, 1990). To provide a thorough reference for future 
DGGS functionality development, we examined five approaches to 
generate slope gradient and aspect in the ISEA3H DGGS environment. 
Experiments at multiple resolutions were carried out over three study 
areas with different levels of roughness in Alberta, Canada. 

The remainder of this paper is arranged as follows. In Section 2, we 
introduce the detailed algorithms developed for various analytical 
functions. Section 3 provides the background of three study areas and 
the computational environment. Section 4 shows the experiment process 
and presents the experiment results. Section 5 discusses the research and 
points out the study impact. Section 6 concludes the paper. 

2. Topographic operations in DGGS 

Fig. 1 shows the local, focal, and zonal classifications of the devel-
oped operations in this study. The detailed algorithms are introduced 
below. 

2.1. Focal statistics 

Computing focal statistics was one of the focal operations developed 
in this research, where neighbor navigation was the first step of all focal 
analytics (Fig. 1). In the ISEA3H DGGS, neighbors of a target cell at a 
certain level can be determined according to a coordinate-based cell 
indexing mechanism (Mahdavi-Amiri et al., 2015). Typically, Quadri-
lateral 2-Dimensional Integer (Q2DI) indexing has been implemented in 
the DGGRID library and its R interface dggridR, which firstly partitions 
the Earth’s surface into 12 quad tiles, as shown in Fig. 2, and provides 
the (i, j) coordinate on the certain quad for each cell at each level (Barnes 
and Sahr, 2017). In the ISEA3H DGGS, there is a relative 30◦ shift of the 
hexagonal grids’ orientation, hence the hexagonal grids’ coordinate 
axes, between every two successive resolutions (Sahr, 2008). Sahr 
(2008) managed to standardize the coordinate axes among different 
resolutions and simplify the indexing method in the ISEA3H tessellation 
by assigning the coordinate of a cell at an odd-resolution level the 

Fig. 1. Classification of the developed operations in this study.  
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coordinate of the centroid-aligned cell at the consecutive finer even- 
resolution level. Depending on the Q2DI indexing mechanism, the (i, 
j) coordinates of six neighbors of each of the cells on the same quad can 
be found based on the center cell’s coordinate. For example, Fig. 3 shows 
the coordinates of six neighbors of the center cell in the first quad at 
even- and odd-resolution levels. In this study, the size of the neighbor-
hood was defined by the number of rings of hexagonal cells, and the 
extended neighborhood was determined recursively by adding the outer 
ring to the inner rings (Fig. 4). When an area of interest is larger than one 
quad, focal operations need cross-quad neighbor navigation considering 
the quad numbers as well as the cell coordinates. In this study, we 
focused on the scenarios where all target cells and their neighbors were 
on the same quad. 

Given the determined neighborhood, the focal statistical algorithm is 

then used to calculate descriptive statistics among the neighboring cells 
and assign the computed values to the center cell at the same DGGS 
resolution level. Basically, the focal statistics are straightforward, which 
use neighboring cells’ indices as keys to extract elevation values 
accordingly and compute statistics. In this study, mean, maximum, 
minimum, median, standard deviation, and range were computed 
(Fig. 1). Edge cells without a complete neighborhood are assigned null 
values for all focal statistics. 

2.2. Zonal statistics 

Zonal statistics are zonal operations that start from reclassifying cells 
according to the defined zones, for example, forest stands. The reclas-
sification process in DGGS depends on the original data model that 
provides spatial information on zones of interest. For instance, if the 
zone information is in raster format with discrete, numeric values rep-
resenting nominal zones, the reclassification will essentially be a 
quantization process using the nearest neighbour interpolation. In the 
case of vector format, the reclassification process will be analogous to a 
vector-to-raster conversion, namely a rasterization process. This can be 
done following the largest-share principle, where the cell received the 

Fig. 2. The spherical and unfolded quad tile structure of the ISEA3H DGGS 
with the Q2DI indexing. Twelve pentagons are shown as hexagons in the 
unfolded quad tiles. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 3. Quadrilateral 2-Dimensional Integer (Q2DI) coordinates of six neighboring cells of each center cell at an a. even-resolution level and b. odd-resolution level in 
the first quad. 

Fig. 4. Illustration of the neighborhood around a center cell defined by the 
number of rings. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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zone attribute which covers the majority of its area, or the central-point 
principle, which assigns the zone identities to a cell if the cell centroid 
spatially falls in a certain zone (Shortridge, 2004). The reclassification 
process can also employ other more sophisticated approaches such as 
considering a Gaussian point spread function around the centroid 
(Zhang et al., 2007). In our implementation, we adopted the central- 
point principle for vector zone data and used the nearest neighbor 
resampling for raster zone data. After reclassifying cells and determining 
cell identities, zonal statistics are to calculate the mean, maximum, 
minimum, median, standard deviation, and range grouped by the zone 
identities, and to assign the values to all DGGS cells belonging to each of 
the zones based on the indexing system (Fig. 1). 

2.3. Topographic parameters 

2.3.1. Slope gradient and aspect 
According to Burrough and McDonell (1998), the slope of a surface 

has two components: gradient and aspect. Computing slope gradient and 
aspect is considered as a focal operation. From the perspective of ge-
ography, the slope gradient is the maximum rate of change in altitude 
with regard to the horizontal plane, and the slope aspect is the compass 
direction toward which the inclined surface has the steepest descent 
(Tomlin, 1990). From the perspective of 2D signal processing, slope 
gradient and aspect are essentially the first derivatives of the 2D signal, 
i.e., the surface (Amatulli et al., 2020). From the perspective of math-
ematical geometry, in a 3D Cartesian coordinate system, the slope 
gradient and aspect can be computed from the normal vector of a local 
plane surface, where the gradient is the angle between the normal line 
and the vertical axis, and the aspect equals to the angle between true 
north and the projection of the normal line on the horizontal surface 

(Hodgson, 1998; Wright, 2017). 
In our research, flat areas, i.e., target cells sharing the common el-

evations as all their neighboring cells, received 0 for the slope gradient 
and − 1 for the slope aspect, where − 1 represented null values. Edge 
cells that do not have a complete neighborhood received null values for 
both the slope gradient and aspect. Based on different perspectives of the 
slope definition, five approaches to calculating slope gradient and aspect 
were developed and tested (Fig. 5): Maximum Adjacent Gradient (MAG), 
Maximum Downward Gradient (MDG), Multiple Downhill Neighbors 
(MDN), Finite-Difference Algorithm (FDA), and Best-Fit Plane (BFP) 
methods (Hodgson, 1998; Shanholtz et al., 1990; Travis, 1975; Wolock 
and McCabe, 1995). These five approaches were derived from those 
algorithms used on traditional, rectangular terrain rasters, and were 
extended into the ISEA3H DGGS context. 

The MAG method calculates the absolute maximum differences be-
tween the center cell and its neighbors (Shanholtz et al., 1990; Fig. 5). 
For the calculation on rectangular raster cells, ambiguity arises when 
defining the neighborhood, where one can account for four orthogonal 
neighbors or eight neighbors including another four diagonal neighbors. 
Nonetheless, in the hexagonal grids, cells are uniformly adjacent so that 
a neighborhood can be precisely defined. In our research, we only 
considered six neighbors, i.e., the first ring, for each cell when 
computing the topographic parameters (Fig. 4). The neighbors are 
scanned clock-wise from the north, and the neighbor with the maximum 
elevation difference is determined. Thus, the slope gradient is the ab-
solute difference between the center cell and the determined cell 
normalized by their cell spacing. The aspect is the direction of the 
determined cell if the slope is downhill or the directly opposite direction 
if the slope is uphill (Skidmore, 1989). 

The MDG method is similar to the MAG method, except that it 

Fig. 5. Illustration of five methods to calculate slope gradient and aspect at even-resolution levels: a. Maximum Adjacent Gradient, b. Maximum Downward Gradient, 
c. Multiple Downhill Neighbors, d. Finite-Difference Algorithm, and e. Best-Fit Plane. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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considers the maximum downward differences between the center cell 
and its neighbors (Travis, 1975; Fig. 5). This can help to preserve local 
variability without overestimating the slope gradient (Dunn and Hickey, 
1998). Problems arise when the center cell does not have any neighbors 
with lower elevations, which is known as a depression. We treated de-
pressions by ‘filling’ the cell to the lowest elevation in its neighbors so 
that the slope gradient received the value of 0 and the aspect is the di-
rection to the lowest neighbor. In both cases of the MAG and MDG 
methods, the generated aspect is limited to six possible directions for 
each target cell. Because there is a 30◦ shift of the hexagonal grids’ 
orientation between every two successive resolutions in the ISEA3H 
DGGS, six possible directions of the aspect are 0◦, 60◦, 120◦, 180◦, 240◦, 
and 300◦ on even-resolution levels, and 30◦, 90◦, 150◦, 210◦, 270◦, and 
330◦ on odd-resolution levels. 

Different from the MDG method, all downward neighbors contribute 
to the slope calculation for each center cell when applying the MDN 
method (Wolock and McCabe, 1995; Fig. 5). Slope gradient is calculated 
as the arithmetic average of the elevation differences between the center 
cell and the downhill neighboring cells normalized by the cell spacing. 
Because the slope aspect is a circular-scale measurement, namely a pe-
riodic value from 0 to 360◦, the average aspect cannot be simply viewed 
as the arithmetic average of all downhill neighbors’ direction angles. 
Therefore, a ‘mean vector’ was used to represent the orientation of the 
‘mean surface’ (Hodgson, 1998). Specifically, separate triangular facets 
are composed by connecting the center cell’s centroid and the centroids 
of the downward neighbors, and the ‘mean vector’ is the sum of the 
normal vectors of these triangular facets. The slope aspect is then 
computed as the angle between the true north and the projection of this 
‘mean vector’ on the horizontal surface (Hodgson and Gaile, 1996). 
Fig. 6 illustrates the computation of the slope aspect of a central cell with 
three downhill neighbors in its first-ring neighborhood. Two special 
situations need to be treated when applying the MDN method. First, if 
the center cell is a depression, the slope gradient will be 0 and the aspect 
will be the direction of the neighbor with the lowest elevation. Second, if 
two downhill neighboring cells are found and are in two opposite di-
rections, then the slope gradient and aspect will be treated by the MDG 
method. 

The FDA method calculates the finite difference of elevations over 
the hexagonal grid (Fig. 5). Elevation differences along three native axes 

of hexagonal grids are projected to two orthogonal axes, and the final 
slope gradient and aspect are computed by combining these two 
orthogonal partial derivatives. The computation method is derived from 
the finite difference algorithm over rectangular grids, while hexagonal 
neighbors receive equal weight because of their uniform adjacency. The 
specific slope gradient and aspect in the hexagonal grid are adjusted 
from the calculation in rectangular grids, and are calculated as (Hodg-
son, 1998): 

gradient = ATAN

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(dx)2
+ (dy)2

√

cell spacing

⎞

⎠ (1)  

aspect = ATAN2(dy, − dx) (2)  

where on even-resolution levels, the elevation differences along two 
orthogonal axes y and x are 

dy = di+ dj⋅sin
π
6
− dk⋅sin

π
6

(3)  

dx = dj⋅cos
π
6
+ dk⋅cos

π
6

(4)  

and on odd-resolution levels are. 

dy = di⋅cos
π
6
+ dj⋅cos

π
6

(5)  

dx = dk+ dj⋅sin
π
6
− di⋅sin

π
6

(6)  

where the elevation differences along three hexagonal axes i, k, and j 
are. 

di =
(e − a) + (a − b)

2
(7)  

dk =
(g − a) + (a − d)

2
(8)  

dj =
(f − a) + (a − c)

2
(9) 

Fig. 6. Illustration of slope aspect calcula-
tion using the Multiple Downhill Neighbors 
method: a. elevations of the center cell and 
its first-ring neighbors where three downhill 
neighbors are in dark green, b. two trian-
gular facets composed by three downhill 
neighbors, c. normal vectors N1

̅→ and N2
̅→ of 

two triangular facets, d. NSUM
̅̅̅→ is the sum of 

normal vectors, which is the mean vector of 

two triangular facets, and e. NSUM
′

̅̅̅ →
is the 

projection of the mean vector on the hori-
zontal surface, and the aspect direction is 

the angle between NSUM
′

̅̅̅ →
and true north. 

(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   

M. Li et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 113 (2022) 102985

6

where a, b, c, d, e, f , and g are the elevation values of a center cell and its 
neighbors, as shown in Fig. 5. 

The BFP method fits a local plane surface accounting for each center 
cell plus its six neighboring cells by linear regression models, where the 
least-square method is used to minimize the sum of distances from the 
fitted plane to all input cell centroids (Travis, 1975; Fig. 5). The normal 
line of the fitted surface can be computed, and the slope gradient is then 
the angle between the normal line and the vertical axis, and the slope 
aspect is the compass direction of the projection of a reference vector, e. 
g., (0,0,1), onto the plane (Hodgson, 1998; Wright, 2017). 

The MDN, FDA, and BFP methods allow returning arbitrary aspect 
angles ranging from 0 to 360◦, whereas aspect angles computed by the 
MAG and MDG methods are bound to the six directions. 

2.3.2. Curvature 
Curvatures are essentially calculated as the second derivatives of the 

surface, which is a focal operation (Amatulli et al., 2020). In this 
research, we computed the curvature by projecting the rate of elevation 
changing rate along three native axes of hexagonal grids onto two 
orthogonal axes and combining two partial secondary derivatives as the 
final curvature value. The calculation follows the equations (Goldgof 
et al., 1989): 

curvature =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(dx2)2
+ (dy2)2

√

cell spacing
(10)  

where dy2 and dx2 are the change of elevation differences along two 
orthogonal axes y and x, and are computed as. 

dy2 = di2+ dj2⋅sin
π
6
− dk2⋅sin

π
6

(11)  

dx2 = dj2⋅cos
π
6
+ dk2⋅cos

π
6

(12)  

on even-resolution levels and. 

dy2 = di2⋅cos
π
6
+ dj2⋅cos

π
6

(13)  

dx2 = dk2+ dj2⋅sin
π
6
− di2⋅sin

π
6

(14)  

on odd-resolution levels, where the change of elevation differences 
along three hexagonal axes i, k, and j are. 

di2 = 2 × a − b − e (15)  

dk2 = 2 × a − c − f (16)  

dj2 = 2 × a − d − g (17)  

where a, b, c, d, e, f , and g are the elevation values of a center cell and its 
neighbors, as shown in Fig. 5. 

2.3.3. Hill-shade 
The inputs of the hill-shade function are local slope gradient and 

aspect, azimuth, and altitude. Therefore, producing hill-shade is a local 
operation and follows the computation methods used for traditional, 
rectangular terrain rasters. Hill-shade values of a cell can be calculated 
following the equation (Burrough and McDonell, 1998): 

Hillshade = 255 ×
(
cos

(π
2
− altitude

)
× cos(gradient)+ sin

(π
2
− altitude

)

× sin(gradient) × cos(azimuth − aspect)
)

(18)  

where altitude, azimuth, slope gradient, and slope aspect are in radians. 

2.4. Topographic indices 

Two topographic indices are produced: TRI and TPI. TRI presents the 
difference in elevation among the center cell’s neighborhood, and TPI 
measures the difference between the center and the average of its 
neighboring cells (Guisan et al., 1999; Riley et al., 1999): 

TRI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(xi − xc)2
√

(19)  

TPI = xc −
∑
xi
n

(20)  

where xi is the elevation of each of the neighboring cells of the center 
cell xc, and n is the number of neighboring cells. In this paper, computing 
topographic indices considered the first-ring-neighborhood for each 
center cell (Fig. 4), thus, n received a constant value of 6. Positive and 
negative TPI values represent the potential ridges and valleys in the 
terrain, respectively (Guisan et al., 1999). Because computing TRI and 
TPI requires neighboring cells to be involved, it is classified as a focal 
operation. 

3. Experiment environment 

The developed analytical functions in the ISEA3H DGGS were 
applied to three areas, each about 170 km2, with different levels of 
roughness in Alberta, around the regions of Buffalo Lake, the City of 
Calgary, and the Town of Canmore (Fig. 7). The Buffalo Lake area 
(112.85 to 113.00◦ W and 52.25 to 52.40◦ N) encompasses a watershed 
having the smoothest terrain surface where the elevation ranged from 
799 to 850 m. The Canmore area (115.35 to 115.50◦ W and 51.15 to 
51.30◦ N) is located in Alberta’s Rocky Mountains and has the roughest 
terrain surface with 1360 to 2919 m elevations. The terrain in the Cal-
gary region, an urban area (114.05 to 114.20◦ W and 51.05 to 51.20◦ N), 
is moderately rough compared to the other two areas, and the elevation 
ranges from 1043 to1274 m. 

The experiment was carried out on a machine with 8 cores, 12 GB 
memory, and 2x Intel(R) Xeon(R) CPU L5520 @ 2.27 GHz, by using 
Python 3.7.7 and R 3.6.2. All developed functionalities were tested on 
the ISEA3H DGGS from level 20 to 24 over three study areas. The 
experiment process ran in parallel using 8 cores, taking advantage of the 
discrete property of DGGS cells. The experiment scripts are available in 
the GitHub repository: https://github.com/Erin-1919/Topographic-op 
erations-DGGS. 

4. Experiment process and results 

4.1. Data acquisition and quantization in DGGS 

Canadian Digital Elevation Model (CDEM) data over three study 
areas were obtained at 0.75 arcsec resolution in the NAD83 CSRS 
reference system through the Geospatial Data Extraction portal in the 
GeoTIFF format (NRCan, 2017). Three study areas are in the same 
icosahedral face and are therefore in the same quad (i.e., the first quad; 
Fig. 2). In terms of the orientation relative to the Earth’s surface, we set 
the longitude (φ) of the pole, latitude (λ) of the pole, and azimuth (α) as 
− 51◦, 37◦, and 0◦, respectively, so that grids over three study areas are 
oriented roughly toward true north. More discussion regarding the grid 
orientation is included in Section 5. Terrain data were modeled in the 
ISEA3H DGGS by resampling the original CDEM rasters over the cell 
centroid locations from level 20 to 24. Specifically, DGGS cell centroid 
locations were determined at each resolution, and a bilinear interpola-
tion was used to estimate the elevation of the certain cell considering the 
nearest four central points of square-gridded rasters. Void values were 
assigned to the edge cells that did not have enough valid interpolation 
inputs. According to the previous quantitative evaluation, bilinear 
interpolation was recommended to quantize square-gridded remote- 
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sensing imagery in hexagonal grids, which showed better information 
entropy, mutual information index, and deviation index, compared to 
other tested methods (Ma et al., 2021). The resolution level 24 with 
about 180.6 m2 hexagonal cell area was the finest modeling level in this 
research, given that the CDEM data were achieved at 0.75 arcsec reso-
lution which approximately equals 400 m2 in cell area. A higher sample 
rate compared to the original sample rate of the CDEM helps to preserve 
the fidelity of the terrain signals (Li and Stefanakis, 2020; Shannon, 
1949). Li et al. (2021) demonstrated that, following the Nyquist–-
Shannon sampling theorem, the difference between pre-DGGS and post- 
DGGS elevations of ground control points was minor at the finest reso-
lution level by using such quantization method (Shannon, 1949). The 
precision, reflected by the decimal places of the modeled elevations, was 
gradually reduced at coarser DGGS resolution levels to maintain the 
rough ratio of the horizontal to vertical resolution, as suggested by Li 
et al. (2021). Parameters of the DGGS configuration used in the exper-
iment are summarized in Table 1. The R library dggridR was used to 
locate the geographic locations of the cell centroids during the quanti-
zation process (Barnes and Sahr, 2017). 

4.2. Focal operations 

4.2.1. Focal statistics 
Focal statistics were tested by using 1–3 rings of hexagonal grids, 

namely the nearest 6, 12, and 18 hexagonal cells were used as the 
searching neighborhood, from level 20 to 24. Calculated statistics 

included the mean, maximum, minimum, median, standard deviation, 
and range of the elevation values. Due to edge effects, where edge cells 
without a complete neighborhood were assigned null values for all 
statistics, the number of cells with valid statistical values was reduced 
with a larger searching neighborhood. Visualization of the focal statis-
tics with the first-ring-neighborhood over three study areas at level 24 is 
available in Figs. 8–10. In this paper, computed results along with their 
hexagonal cell geometries were exported to Esri shapefile to be 

Fig. 7. The spatial locations and elevations of three study areas in Alberta, Canada in the World Geodetic System 1984 (WGS84) coordinate system (NRCan, 2015). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Parameters of DGGS configuration used in the experiment.  

Parameter Value 

Tessellation ISEA3H 
Basic Platonic Solid Icosahedron 
Projection Snyder equal area projection 
Aperture Three 
Cell geometry Hexagon 
Orientation Longitude of the pole (φ) = − 51◦

Latitude of the pole (λ) = 37◦

Azimuth (α) = 0◦

Resolution levels and cell area Cell area is about 14628.5 m2 at level 20 
Cell area is about 4876.2 m2 at level 21 
Cell area is about 1625.4 m2 at level 22 
Cell area is about 541.8 m2 at level 23 
Cell area is about 180.6 m2 at level 24  

M. Li et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 113 (2022) 102985

8

visualized (ESRI, 1998). 

4.2.2. Slope gradient and aspect 
Slope gradient was computed by five methods over three study areas. 

The BFP method cost the most computation time, followed by MDN, 
MAG and MDG, and FDA methods (Fig. 11). The maximum gradient was 
greater at finer resolutions in all areas no matter what method was used. 
This was the most apparent over the least rough area, Buffalo Lake, 
where the determined maximum slope gradient was 4.20 to 8.38◦ at 
level 20 and 8.72 to17.33◦ at level 24 by different calculation methods 
(Table 2). The MDG, MDN, and FDA methods resulted in a greater mean 
slope gradient at finer levels in all areas (Table 2–4). The minimum 
gradient was 0 at all levels in three study areas. 

To analyze to what extent the slope gradients calculated by different 
methods agreed with each other, we compared each of the methods pair- 
wise by Pearson correlation coefficients (r) across five resolution levels. 
In the Buffalo Lake area, high correlation coefficients (r > 0.9) were 
observed between five methods. In the Calgary and Canmore areas, the 
calculated Pearson correlation coefficients of slope gradient were all 
higher than 0.8. In other words, the slope gradient calculated by 
different methods had stronger, positive relationships among all reso-
lutions. The visualized slope gradient by five methods in three study 
areas at level 24 is shown in Fig. 12. 

The slope aspect was computed along with the gradient by five 
methods. Because the aspect was not a linear measurement, the direct 
quantitative analysis of aspect degree was not included in this paper. 

Fig. 8. Visualization of focal statistics of elevations (mean, maximum, minimum, median, standard deviation, and range), curvature, hill-shade, Terrain Roughness 
Index (TRI), and Topographic Position Index (TPI) at level 24 in the Buffalo Lake area. Mean, maximum, minimum, and median elevations are visualized by 
hypsometric tinting whereas hill-shade is based on terrain shading. 
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Nonetheless, Li et al. (2022) generated flow routing grids based on these 
five algorithms in the ISEA3H DGGS and found that the flow directions, 
essentially aspect directions, can vary among different methods. Such 
variation can propagate to the flow-up hydrological parameter pro-
duction such as flow accumulation, upslope contributing area, and hy-
drological indices, reflected by both the cell-wise comparison and 
visualization (Li et al., 2022). 

4.2.3. Curvature 
Curvature was calculated based on the first-ring neighborhood. 

Generally, a greater changing rate of the slope was identified at finer 
resolution levels in rougher areas. The highest mean curvature was 
observed at level 24, which were 0.002, 0.003, and 0.004 in the Buffalo 

Lake, Calgary, and Canmore areas, respectively, with all achieving 
calculated standard errors of mean less than 0.0005 (Table 5). Across 
levels 20 to 24, the maximum curvature ranged from 0.002 to 0.042 in 
the Buffalo Lake area, 0.003 to 0.034 in the Calgary area, and 0.019 to 
0.460 in the Canmore area, with finer resolutions corresponding to 
higher curvature (Table 5). The minimum curvature was 0 over the 
levels, meaning no change in the slope. Calculated curvature at level 24 
in three study areas is visualized in Figs. 8–10. 

4.2.4. TRI 
TRI was computed following Eq. (19) within the first-ring- 

neighborhood. Higher values were observed at coarser resolution 
levels in rougher areas. Mean TRI values were 2.89, 10.10, and 86.96 at 

Fig. 9. Visualization of focal statistics of elevations (mean, maximum, minimum, median, standard deviation, and range), curvature, hill-shade, Terrain Roughness 
Index (TRI), and Topographic Position Index (TPI) at level 24 in the Calgary area. Mean, maximum, minimum, and median elevations are visualized by hypsometric 
tinting whereas hill-shade is based on terrain shading. 
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level 20, and 0.40, 1.19, and 9.63 at level 24 in the Buffalo Lake, Cal-
gary, and Canmore areas, respectively, with higher standard error of 
mean in coarser levels (Table 5). The minimum TRI value was 0 at all 
levels, representing flat areas. TRI in three study areas at level 24 is 
visualized in Figs. 8–10. 

4.2.5. TPI 
Based on Eq. (20), TPI was calculated to measure the difference 

between the center cell and the average of its six neighbors. TPI can be 
positive or negative, and 0 represents flat areas. Higher absolute values 
were generally found at coarser levels in rougher areas. The values 
ranged from − 4.30 to 7.77 at level 20 and − 1.33 to 1.88 at level 24 in 
the Buffalo Lake area, ranged from − 9.57 to 9.47 at level 20 and − 1.53 

to 0.87 at level 24 in the Calgary area, and ranged from − 43.95 to 64.87 
at level 20 and − 7.00 to 18.14 at level 24 in the Canmore area (Table 5). 
Visualization of TPI over three tested areas at level 24 is available in 
Figs. 8–10. 

4.3. Local operations 

In our implementation, the hill-shade parameters azimuth and alti-
tude in Eq. (18) were set with default values of 315◦ and 45◦, respec-
tively. The slope gradient and slope aspect used to generate hill-shade 
were based on the FDA method because it cost the shortest computation 
time in our experiment (Fig. 11). Visualization of the hill-shade over 
three study areas at level 24 is shown in Figs. 8–10. 

Fig. 10. Visualization of focal statistics of elevations (mean, maximum, minimum, median, standard deviation, and range), curvature, hill-shade, Terrain Roughness 
Index (TRI), and Topographic Position Index (TPI) at level 24 in the Canmore area. Mean, maximum, minimum, and median elevations are visualized by hypsometric 
tinting whereas hill-shade is based on terrain shading. 
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4.4. Zonal operations 

We used the classification raster of the 2020 Annual Crop Inventory 
produced by the Agriculture and Agri-Food Canada as an example to 
partition the zones (AAFC, 2020). The map was created by decision trees 
based on multiple satellite image series and showed the spatial distri-
bution of crop and vegetation types in Canada with integer codes rep-
resenting classifications. The classification raster was quantized in the 
ISEA3H DGGS over three study areas from level 20 to 24 by nearest 

Fig. 11. The average time consumed in calculating slope gradient and aspect 
by the Maximum Adjacent Gradient (MAG), Maximum Downward Gradient 
(MDG), Multiple Downhill Neighbors (MDN), Finite-Difference Algorithm 
(FDA), and Best-Fit Plane (BFP) methods over three study areas from level 20 
to 24. 

Table 2 
Slope gradient calculated by five algorithms in the Buffalo Lake area (unit: ◦).    

Level 
20 

Level 
21 

Level 
22 

Level 
23 

Level 
24 

Maximum 
Adjacent 
Gradient 

Max  8.38  9.06  10.18  10.99  16.51 
Mean  0.92  0.99  1.11  1.22  1.25 
Standard 
error of 
mean  

0.01  0.00  0.00  0.00  0.00  

Maximum 
Downward 
Gradient 

Max  8.38  9.06  10.18  10.99  16.51 
Mean  0.65  0.71  0.75  0.77  0.81 
Standard 
error of 
mean  

0.01  0.00  0.00  0.00  0.00  

Multiple 
Downhill 
Neighbors 

Max  4.59  6.85  7.06  8.15  12.01 
Mean  0.49  0.55  0.58  0.57  0.57 
Standard 
error of 
mean  

0.00  0.00  0.00  0.00  0.00  

Finite- 
Difference 
Algorithm 

Max  7.34  12.12  14.38  15.61  17.33 
Mean  0.94  1.08  1.15  1.18  1.22 
Standard 
error of 
mean  

0.01  0.00  0.00  0.00  0.00  

Best-Fit Plane Max  4.20  6.97  8.18  8.55  8.72 
Mean  0.34  0.31  0.23  0.16  0.11 
Standard 
error of 
mean  

0.00  0.00  0.00  0.00  0.00  

Table 3 
Slope gradient calculated by five algorithms in the Calgary area (unit: ◦).    

Level 
20 

Level 
21 

Level 
22 

Level 
23 

Level 
24 

Maximum 
Adjacent 
Gradient 

Max  18.51  21.26  20.79  22.08  21.89 
Mean  3.11  3.03  2.99  3.11  3.24 
Standard 
error of 
mean  

0.02  0.01  0.01  0.00  0.00  

Maximum 
Downward 
Gradient 

Max  18.51  21.26  20.79  22.08  21.89 
Mean  2.52  2.58  2.59  2.63  2.69 
Standard 
error of 
mean  

0.02  0.01  0.01  0.00  0.00  

Multiple 
Downhill 
Neighbors 

Max  13.20  14.63  15.41  15.43  17.67 
Mean  1.71  1.76  1.79  1.80  1.82 
Standard 
error of 
mean  

0.01  0.01  0.00  0.00  0.00  

Finite- 
Difference 
Algorithm 

Max  26.32  28.46  30.33  31.36  31.56 
Mean  3.81  3.96  4.03  4.06  4.11 
Standard 
error of 
mean  

0.03  0.02  0.01  0.01  0.00  

Best-Fit Plane Max  15.93  17.34  18.57  19.11  18.74 
Mean  2.08  2.02  1.80  1.44  1.01 
Standard 
error of 
mean  

0.02  0.01  0.01  0.00  0.00  

Table 4 
Slope gradient calculated by five algorithms in the Canmore area (unit: ◦).    

Level 
20 

Level 
21 

Level 
22 

Level 
23 

Level 
24 

Maximum 
Adjacent 
Gradient 

Max  65.16  65.02  67.24  65.52  67.39 
Mean  22.34  21.60  21.11  20.76  20.66 
Standard 
error of 
mean  

0.15  0.08  0.05  0.03  0.02  

Maximum 
Downward 
Gradient 

Max  65.16  65.02  67.24  65.52  67.39 
Mean  19.35  19.72  19.92  19.97  20.06 
Standard 
error of 
mean  

0.14  0.08  0.05  0.03  0.02  

Multiple 
Downhill 
Neighbors 

Max  55.50  60.41  57.88  61.76  58.31 
Mean  13.44  13.71  13.85  13.85  13.90 
Standard 
error of 
mean  

0.10  0.06  0.03  0.02  0.01  

Finite- 
Difference 
Algorithm 

Max  70.85  72.99  74.08  74.42  74.47 
Mean  27.17  27.66  27.84  27.92  27.95 
Standard 
error of 
mean  

0.18  0.10  0.06  0.03  0.02  

Best-Fit Plane Max  58.98  62.08  63.70  64.21  64.27 
Mean  17.84  18.22  18.30  18.15  17.75 
Standard 
error of 
mean  

0.12  0.07  0.04  0.03  0.01  
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neighbor resampling. The mean, maximum, minimum, median, stan-
dard deviation, and range of the elevation values were calculated among 
classification zones over three study areas. The statistics results among 
zones of shrubland, wetland, grassland, coniferous forest, broadleaf 
forest, and mixed-wood forest at level 24 are summarized in Table 6. 

5. Discussion 

5.1. Aspect directions in DGGS 

Due to the nature of the ISEA3H tessellation, a relative 30◦ rotation 
of the hexagonal grids exists between each successive level (Sahr, 2008). 
Therefore, the direction bins of the anisotropic slope aspect were 

different at odd-resolution and even-resolution levels. The unrestricted 
slope aspect calculated using the MDN, FDA, and BFP methods was less 
affected by grid axes’ shifts. In terms of hexagonal grids with other 
aperture, a relative 19.1◦ rotation of the axes exists in an aperture 7 
hexagonal grid between successive resolutions, while an aperture 4 
hexagonal grid is free of axes rotation among resolution levels (Sahr, 
2019). 

In addition, the definition of the aspect directions in this paper can be 
different than the true understanding of the terrain aspect which is 
defined as the compass direction relative to true north (Skidmore, 
1989). Instead, we used the direction to which grids within a certain 
area of interest are orientated as the referenced north. As Florinsky 
(1998) suggested, local attributes such as slope gradient and aspect are 

Fig. 12. Visualization of the slope gradient calculated by the Maximum Adjacent Gradient (MAG), Maximum Downward Gradient (MDG), Multiple Downhill 
Neighbors (MDN), Finite-Difference Algorithm (FDA), and Best-Fit Plane (BFP) methods at level 24 in three study areas. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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mathematical variables rather than real-world values. When the orien-
tation of the DGGS relative to the Earth’s surface is configured so that 
the grids within the study area are orientated to an unneglectable angle 
to the true north, then a constant angle needs to be added to the 
calculated aspect direction, if a true aspect value is desired. Moreover, 
the area of interest can be so large that the cell orientation within the 
area of interest cannot be ignored. This situation was not explored here 
and is left for future study. 

5.2. Comparison between slope calculation methods 

Among the five methods to calculate the slope gradient and aspect, 
the MAG and MDG algorithms produced restricted, discrete aspect di-
rections while the MDN, FDA, and BFP algorithms contributed to un-
restricted, continuous aspect values. The FDA is computationally the 
most efficient algorithm, while the BFP turns out to be the most 
computationally expensive algorithm. In addition, when calculating the 
slope using the MDG or MDN algorithms, it is possible that the center 
cell does not have any neighbors with lower elevations, a situation that 
we treated by increasing the cell elevation to that of its lowest neighbors 

and by assigning the slope gradient value 0. However, the other three 
methods (i.e., MAG, FDA, and BFP) were less sensitive to such scenarios 
when computing the slope gradient and aspect and they can all be 
applied to a surface with small depressions. Nonetheless, a smoothing 
filter before calculating slope gradient or aspect was recommended to 
eliminate small depressions and peaks no matter what algorithm is 
applied (Srinivasan and Engel, 1991). This can be done by focal statistics 
developed in this research, namely, producing the mean value in the 
neighborhood for each center cell. 

Previous studies evaluated slope calculation methods by comparing 
results to known ground values or assuming that one method of deter-
mining slope gradient and aspect produced true values (Hodgson, 1998; 
Skidmore, 1989). Guth (1995) noticed that different algorithms can vary 
the average slope by as much as 25%. In this study, various methods 
were compared using Pearson correlation coefficients calculated in 
terms of slope gradient, and the values were highly and positively 
related among five methods across multiple resolutions. Nonetheless, 
the slope aspect angles were not compared directly in this study, and the 
potential differences can propagate these uncertainties to the compu-
tation of, for example, flow directions and flow accumulation (Li et al., 

Table 5 
Curvature, Terrain Roughness Index (TRI), and Topographic Position Index (TPI) in three study areas from level 20 to 24.    

Curvature TRI TPI   

Max Mean SEM1 Max Mean SEM Max Min 

Buffalo Lake area 20  0.002  0.000  0.000  25.10  2.89  0.02  7.77  − 4.30 
21  0.004  0.000  0.000  17.27  1.82  0.01  4.84  − 2.94 
22  0.008  0.001  0.000  11.83  1.14  0.00  3.13  − 2.59 
23  0.016  0.001  0.000  7.42  0.69  0.00  2.20  − 1.78 
24  0.042  0.002  0.000  6.00  0.40  0.00  1.88  − 1.33  

Calgary area 20  0.003  0.000  0.000  68.35  10.10  0.07  9.47  − 9.57 
21  0.004  0.000  0.000  43.26  5.84  0.03  4.26  − 4.45 
22  0.006  0.001  0.000  26.92  3.40  0.01  1.91  − 2.19 
23  0.014  0.001  0.000  16.20  2.01  0.00  1.04  − 1.74 
24  0.034  0.003  0.000  9.42  1.19  0.00  0.87  − 1.53  

Canmore area 20  0.019  0.002  0.000  401.74  86.96  0.63  64.87  − 43.95 
21  0.024  0.002  0.000  260.82  50.18  0.21  29.32  − 20.20 
22  0.059  0.003  0.000  161.18  28.91  0.07  22.11  − 12.63 
23  0.127  0.003  0.000  95.23  16.68  0.02  17.91  − 6.63 
24  0.460  0.004  0.000  55.16  9.63  0.01  18.14  − 7.00  

1 SEM stands for standard error of mean. 

Table 6 
Zonal statistics of the elevation values among crop and vegetation classification zones in three study areas at level 24.    

Mean Maximum Minimum Median Standard deviation Range 

Buffalo Lake area Shrubland  814.3  844.0  799.0  813.9  6.4  45.0 
Wetland  813.3  849.6  799.0  812.1  7.0  50.6 
Grassland  814.1  849.1  799.0  813.0  6.9  50.1 
Coniferous  814.1  848.0  799.0  813.3  7.3  49.0 
Broadleaf  815.1  850.0  799.0  815.0  6.6  51.0 
Mixed-wood  814.3  835.0  802.0  814.0  5.8  33.0  

Calgary area Shrubland  1144.9  1264.8  1046.0  1128.5  55.7  218.8 
Wetland  1144.7  1268.0  1044.0  1121.0  55.6  224.0 
Grassland  1167.0  1268.0  1049.4  1171.9  50.7  218.6 
Coniferous  1141.5  1273.0  1044.0  1124.5  57.6  229.0 
Broadleaf  1156.7  1268.5  1045.0  1161.1  55.2  223.5 
Mixed-wood  1148.4  1251.4  1045.0  1154.0  57.0  206.4  

Canmore area Shrubland  1793.6  2369.2  1360.0  1765.4  279.1  1009.2 
Wetland  1644.5  2494.5  1360.0  1529.9  283.2  1134.5 
Grassland  1963.6  2505.8  1364.6  1961.9  295.2  1141.2 
Coniferous  1672.8  2712.0  1381.3  1606.9  242.1  1330.7 
Broadleaf  1655.8  2479.8  1360.0  1520.0  299.6  1119.8 
Mixed-wood  1832.7  2669.5  1360.0  1826.4  294.1  1309.5  
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2022). 

5.3. Influences of DGGS resolutions 

Slope gradient and curvature are the first and second derivatives of a 
surface, where the discrete differences are normalized by the cell size. 
Overall, both the computed slope gradient and curvature were found to 
increase at finer modeling levels in this study. The observations were 
mainly due to the smoothing of the modeled terrain at coarser resolu-
tions (Vázquez and Feyen, 2007). This was partially in line with the 
previous research on traditional DEM which found that the slope 
gradient decreased as DEM cells aggregated to coarser resolutions, 
although there was not a clear tendency of curvature with regard to 
resolutions (Wu et al., 2008). Nonetheless, the produced TRI and TPI 
which measured the difference between the center cell and its neigh-
borhood without normalization tended to be higher at coarser modeling 
levels, in terms of their absolute values. We also noticed that the smooth 
area had more sensitivity to modeling resolutions regarding the slope 
gradient, which suggested that an appropriate modeling resolution de-
pends on the terrain surface complexity. For example, a fine resolution 
can benefit modeling a mountainous area while it is not necessarily 
required for a flat landscape (Hengl and Evans, 2009; Shannon, 1949; 
Wu et al., 2008). 

5.4. Study impact 

This work reviewed a few topographic analysis algorithms on rect-
angular grids and explored their application using a hexagonal DGGS. 
The concepts of the developed algorithms can be used in other DGGS 
where the cell geometry is a hexagon, for instance, hierarchical grids 
with four or seven as the refinement ratio among levels, as long as an 
indexing system is available to support the neighbor navigation. In 
addition, we reviewed five methods to calculate slope gradient and 
aspect in the ISEA3H DGGS, and pair-wisely compared them over mul-
tiple granularities and areas. Analysis of other hexagonal tessellations 
with an aperture of four or seven should reveal a more apparent impact 
from resolution levels because of their more rapid change of cell size 
across levels. This research also helped to bridge the gap between the 
existing DGGS implementations and the DGGS-driven decision-making 
in the future. For example, topographic parameters and topographic 
indices are commonly used as influencing factors in ecological 
modeling, environmental mapping, and disaster prediction (Esfandiari 
et al., 2020; Zhao et al., 2019). The proposed methods for producing 
these parameters or indices, together with the data integration ability, 
will contribute to effective cell-based predictive modeling in a pure 
DGGS environment. 

6. Conclusions 

This study developed analytical operations for modeled terrain data 
in a pure ISEA3H DGGS environment and discussed them by three cat-
egories, namely focal, local, and zonal operations. The developed 
functions included focal statistics, zonal statistics, topographic param-
eters such as slope gradient and aspect, curvature, hill-shade, and two 
topographic indices. Five methods to generate slope gradient and aspect 
on a hexagonal grid were reviewed and demonstrated in a hexagonal 
grid, and the experiments were carried out over three areas with 
different roughness across five resolution levels. Results showed that the 
FDA method produced continuous aspect direction values, was free from 
pre-smoothing operations, and cost the least computation time. 
Although the averaged slope gradient values did not highly agree among 
the five methods, the cell-based, pair-wise comparison of the slope 
gradient showed strong positive relationships between each two of the 
methods. We also noticed that higher slope gradient and curvature 
values while lower TRI and TPI values were determined at finer reso-
lutions. A fine resolution level was not always recommended, especially 

over a flat terrain surface. This research demonstrated the multi- 
resolution terrain analysis in a hexagonal DGGS and is useful for 
further application of DGGS to support decision-making in the real 
world. 
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