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Abstract: Among the most prevalent natural hazards, flooding has been threatening human lives
and properties. Robust flood simulation is required for effective response and prevention. Machine
learning is widely used in flood modeling due to its high performance and scalability. Nonetheless,
data pre-processing of heterogeneous sources can be cumbersome, and traditional data processing
and modeling have been limited to a single resolution. This study employed an Icosahedral Snyder
Equal Area Aperture 3 Hexagonal Discrete Global Grid System (ISEA3H DGGS) as a scalable,
standard spatial framework for computation, integration, and analysis of multi-source geospatial
data. We managed to incorporate external machine learning algorithms with a DGGS-based data
framework, and project future flood risks under multiple climate change scenarios for southern
New Brunswick, Canada. A total of 32 explanatory factors including topographical, hydrological,
geomorphic, meteorological, and anthropogenic were investigated. Results showed that low elevation
and proximity to permanent waterbodies were primary factors of flooding events, and rising spring
temperatures can increase flood risk. Flooding extent was predicted to occupy 135–203% of the 2019
flood area, one of the most recent major flooding events, by the year 2100. Our results assisted in
understanding the potential impact of climate change on flood risk, and indicated the feasibility of
DGGS as the standard data fabric for heterogeneous data integration and incorporated in multi-scale
data mining.

Keywords: flood modeling; Discrete Global Grid Systems; climate change; multi-resolution; machine
learning

1. Introduction

During the long period of Geographic Information Systems (GIS) development,
geospatial phenomena are commonly modeled by sliced thematic layers with traditional
GIS techniques. This is practical when a particular piece of spatial information is of interest
at a specific time at a certain scale, but can raise problems when dealing with multiple
themes of information in different data formats at various scales and across the time se-
ries. Given the diverse spatial data collection methods and the increasing number of data
formats, data cleaning has become a cumbersome and time-consuming task. Although
geospatial artificial intelligence and computation power has been advanced in recent years,
decision-making processes involving heterogeneous sources at multiple scales are still
challenging.

Contrary to the traditional GIS, Discrete Global Grid Systems (DGGS) are a “multiscale
congruent geography”, providing a solution to multiple thematic layers integration and
accommodating spatial resolutions or positional uncertainties [1,2]. DGGS are novel,
standard spatial reference systems which hierarchically tessellate the entire Earth’s surface
into almost identical cells without overlaps or gaps at each level [3]. With a defined DGGS
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configuration, each cell has a deterministic coverage at a certain resolution [4]. These
properties make DGGS an ideal framework for heterogeneous geospatial data integration
and multi-scale geospatial data queries. In the previous literature, multi-source data have
been integrated into DGGS as a common spatial structure to support wildfire modeling [5],
ship grounding projections [6], land-sea interface incorporation [7], and consistent elevation
service development [8].

This study aimed to explore the application of DGGS in the flood mapping domain,
which commonly involves heterogeneous data sources and complex modeling processes.
Flooding is a natural hazard with a global prevalence that can cause the dramatic loss of
lives and livelihoods, and flood simulation is increasingly in need regarding real-time flood
warnings, rapid response, and future risk estimates. In the past, a few attempts have been
made in the context of scalable geographic grids. For instance, Chen et al. [9] employed
a grid-coarsening approach to reduce the computation cost in 2D urban flood modeling.
Chaudhuri et al. [10] implemented a height above the nearest drainage-based model in a
DGGS framework to visualize the flood inundation via a dynamic user interface, although
some steps of the pre-processing were done outside the DGGS environment.

Specifically, this paper adopted an Icosahedral Snyder Equal Area Aperture 3 Hexago-
nal Grid (ISEA3H) DGGS as the scalable, standard spatial framework. To our knowledge,
this is the first attempt to quantize and calculate data values of various variables in the
pure DGGS environment to support multi-scale flood risk projections. In terms of the
advantages of the ISEA3H DGGS, hydrological modeling on hexagonal grids has been
studied and noted to outperform traditional, rectangular grids in terms of watershed
characteristics because of the consistent connectivity [11,12]. In addition, sampling over
hexagonal grids has noticeable advantages due to their uniform adjacency, in comparison
to other regular grids with rectangular or triangular geometries. The refinement ratio of
three has the characteristic of monotone convergence concerning the point displacement
so that the displacement between the original location and the modeled cell centroid is
less at finer DGGS levels. The hierarchical nature of DGGS can also support multi-scale
analysis in a systematic manner, where the area ratio between two consecutive resolutions
is consistent. Algorithms on hexagonal grids were explored by a few studies, although not
using multi-scale structures, such as flow direction and accumulation, watershed bound-
ary extraction, valley line modeling, and flood zone delineation [11–14]. In particular,
topographical and hydrological parameters commonly used in flood modeling have been
developed in the context of ISEA3H DGGS and implemented at multiple resolutions, which
set the foundation of this study [15,16].

A number of influencing factors of flood risks have been investigated before and previ-
ous studies have shown their importance depending on the varying scenarios.
Tehrany et al. [17] examined Light Detection and Ranging (LiDAR) derived topographical
factors supplemented by geology, soil, land use, and proximity to roads and rivers using
the Decision Tree and Support Vector Machine (SVM) to conclude that elevation is the
major predictor, followed by the other LiDAR-derived topographical factors. A weakly la-
beled SVM including elevation, slope, topographic wetness index, precipitation, and other
anthropogenic factors showed high accuracy in assessing urban flood susceptibility [18].
McGrath and Gohl [19] also found that elevation and proximity to permanent waterbodies
were the key explanatory factors and highlighted the impact of meteorological variables in
addition to hydro-geomorphological factors on flood susceptibility mapping by using the
Random Forest (RF) algorithm.

The specific objectives of this research are (1) to demonstrate the use of the hexagonal
DGGS in flood mapping, and (2) to identify the top influencing factors and understand the
impact of climate change on flood risks. This research focused on flooding risks in southern
New Brunswick, Canada as a case study, where seasonal floods take place around the St.
John River in spring. Urban floods in this region are largely caused by meteorological
conditions. Thick snowpack remains for a long period until spring thaw when snowmelt
runoff flows into rivers, which leads to local overflows [20]. The accumulation of rain and
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rising temperatures in spring can also accelerate snowmelt and surface runoff [20]. In addi-
tion to the meteorological conditions, another four categories of influencing factors were
considered in this study: terrain-derived parameters, hydrological parameters, geomorphic
factors, and anthropogenic factors. These factors largely referred to the work of McGrath
and Gohl [19] which thoroughly considered potential explanatory variables and one of
whose study areas was also in the province of New Brunswick. Explanatory factor data at
multiple resolutions were integrated into the ISEA3H DGGS environment and flood risks
under several climate change scenarios were forecasted by assembling multiple machine
learning algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the techniques
commonly used in the flood modeling domain. Section 3 describes the study area and data
sources. Section 4 introduces the quantization and production of predictor variables in
DGGS. Section 5 demonstrates the flood modeling process using machine learning methods.
Section 6 presents and visualizes the flood modeling results at multiple granularities.
Section 7 discusses the outcomes of the research and Section 8 concludes the paper.

2. Flood Modeling Techniques

Based on the application of flood modeling, various approaches to flood mapping have
been developed in previous studies. Multi-criteria decision analysis has been commonly
used for flood susceptibility mapping, physical-based models were popular in mapping
flood hazard, remote-sensing techniques were largely utilized in flood inundation clas-
sifications, and data-driven models, including statistical models and machine learning
methods, were widely applied to flood inundation and susceptibility mapping [21]. Among
these, physical-based models and multi-criteria decision analysis require in-depth exper-
tise and are not easily scalable to large study areas with massive amounts of data [21,22].
Remote-sensing techniques are practical for historical or in-time flood mapping, while are
usually in need of manual processes and assessment [23]. Data-driven models overcome
the above limitations, and data-driven models based on machine learning techniques have
particularly revealed the robustness and efficiency of flood modeling and the ability to
adapt to large data sizes [21]. Classic machine learning algorithms such as RF and SVM
were frequently used to identify essential factors for flood-prone area mapping [17,19,24].
The Artificial Neural Networks (ANN) and Multilayer Perceptron (MLP) have been used
in flood prediction and other more complex hydrological models given their generaliza-
tion ability and high model accuracy [25,26]. Furthermore, advanced algorithms such as
Maximum Entropy (MAXENT), Extreme Gradient Boosting (XGBoost), and Multivariate
Adaptive Regression Splines (MARS) have shown their practicability in assessing flood
susceptibility [27–30], whereas the MAXENT model particularly prefers a uniform distribu-
tion by maximizing the conditional entropy to minimize the subjective bias in the model
results [31].

It was noticed that the capability of diverse machine-learning algorithms can vary
across specific scenarios, and the accuracy of a machine-learning algorithm depends on the
sample data based on which it is trained as well as the predictor variables involved [21].
Given that numerous existing machine learning algorithms have been successfully applied
in flood modeling, the focus of this research was to demonstrate the use of the hexagonal
DGGS for applications in flood mapping instead of conducting a comprehensive compari-
son between machine learning algorithms in this specific domain. In this research, the RF,
ANN, MLP, and SVM machine learning algorithms were used to understand the important
influencing factors on flood risks and to predict flood extent, given their popularity in the
flood modeling domain. The description of these four models is as follows.

The Random Forests (RF) algorithm is a classification or regression algorithm by
ensemble learning method [32]. Using bootstrap bagging and feature randomness, it
constructs numerous uncorrelated decision trees with a class prediction by each tree [32].
The final class prediction of the RF algorithm depends on the class prediction by all
individual trees with the most votes [32]. Although RF can be used for regression, its
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classification functionality was used in this study. The RF classification was prevalent in
the literature regarding flood mapping studies [19,33,34].

The Artificial Neural Networks (ANN) is a data-driven model which imitates bio-
logical neural networks consisting of inter-connected neuron units, known to have high
efficiency and fault tolerance in modeling complicated flood processes [21]. According to
Jain and Prasad Indurthy [35], the ANN also provides superior generalization ability and
computation speed in comparison with conventional methods. The ANN has a variety
of applications in hydrological modeling, such as time-series hydrological modeling [25],
developing flood forest systems [36], and precipitation–runoff modeling [37].

The Multilayer Perceptron (MLP) is an advanced variation of ANN, classified as a
feed-forward neural network, with the properties of simplicity, nonlinear activation, and
high inner layer numbers [38]. The MLP applies supervised learning of backpropagation
to the network training of multiple inner layers with inter-connected neuron nodes [38].
Compared to the other variations of ANN, the MLP is particularly popular in the hydrology
domain [39,40].

The Support Vector Machine (SVM) is another popular algorithm in flood modeling
because of its robustness for both linear and nonlinear classification and the efficiency of
mapping input data into feature spaces [17,24]. Based on the statistical learning theory and
the structural risk minimization rule, the SVM creates the hyperplane to separate classes
with minimal empirical classification error and maximum geometric margin [41,42].

3. Study Area and Data Sources

The study area is about 10,000 km2, located in the south of the Province of New
Brunswick, and covers the partial drainage basin of the St. John River (Figure 1a). The flood
extent polygons of four historical large flood events that occurred in 2008, 2015, 2018, and
2019 in the area, produced from Synthetic Aperture Radar (SAR) imagery, are available at
the archive of floods in Canada from the Canadian Open Government Portal [43]. Our study
area covers the major flooding extent in the province in these four years. The overall extent
in a certain year was created by merging the flood extent polygons on different dates in the
same year. The estimated flooding area is 853.13, 708.77, 1233.38, and 1030.26 km2 in the
years 2008, 2015, 2018, and 2019, respectively. A total of 600 points were randomly sampled
in the study area for each of the four years, with 300 points outside the corresponding
flooding extent and another 300 points within the flooding extent, while not overlapping
the permanent waterbody areas (Figure 1b).

In this study, 32 explanatory factors in five categories were examined, including topo-
graphical, hydrological, geomorphic, meteorological, and anthropogenic factors. Detailed
information on all influencing factors is summarized in Table 1. Except for meteoro-
logical predictors, all predictor values modeled in the DGGS were derived from open
geospatial data available at the Canadian Open Government Portal (https://open.canada.
ca/en/open-data (accessed on 5 May 2022)) or the provincial GeoNB Data Catalogue
(http://www.snb.ca/geonb1/e/DC/catalogue-E.asp (accessed on 5 May 2022)) by apply-
ing either a quantization process or computation algorithms described in the previous
literature (e.g., [15,16]). Raw geospatial data were obtained in raster or vector formats.
Most of the raster data were at 30 m resolution, with the exception of the elevation data
acquired from the High Resolution Digital Elevation Model [44] at 1 m resolution.

Table 1. Summary of five categories of predictor variables and data sources.

Category Abbreviation Description Raw Format

Terrain-derived
dtm 1 Digital Terrain Model (i.e., elevations) GeoTIFF
asp Aspect
slp Slope

https://open.canada.ca/en/open-data
https://open.canada.ca/en/open-data
http://www.snb.ca/geonb1/e/DC/catalogue-E.asp
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Table 1. Cont.

Category Abbreviation Description Raw Format

curv Curvature
rgh Roughness
tri Terrain roughness index
tpi Topographic position index

Hydrological

fldir Flow direction
flacc Flow accumulation

msi 2 Probability of the annual minimum
snow and ice GeoTIFF

nhn 3 Distance to the nearest permanent
waterbodies Geodatabase

wl 4 Wetland Shapefile
spi Stream power index
twi Topographic wetness index

Geomorphic

lc 5 Land cover classes GeoTIFF
scc 6 Stand crown closure GeoTIFF
tfv 7 Total forest volume GeoTIFF
ndvi 8 Normalized difference vegetation index GeoTIFF
sol 9 Soil types Geodatabase
geo 10 Surficial geology types Geodatabase

Meteorological 11

fprcptot Total precipitation in last fall

NetCDF

ftgmean Mean temperature in last fall

ftnmean Mean of daily min temperature in last
fall

wprcptot Total precipitation in winter
wtgmean Mean temperature in winter
sprcptot Total precipitation in spring
stgmean Mean temperature in spring

stxmean Mean of daily max temperature in
spring

sr10 Spring wet-days > 10 mm
sr20 Spring wet-days > 20 mm

Anthropogenic ia Impervious areas
nrn 12 Distance to the nearest major roads Shapefile

1 https://open.canada.ca/data/en/dataset/0fe65119-e96e-4a57-8bfe-9d9245fba06b (accessed on 5 May 2022).
2 https://open.canada.ca/data/en/dataset/808b84a1-6356-4103-a8e9-db46d5c20fcf (accessed on 5 May 2022).
3 https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b87956c07977 (accessed on 5 May 2022).
4 http://www.snb.ca/geonb1/e/DC/RW.asp (accessed on 5 May 2022). 5 https://open.canada.ca/data/en/
dataset/4e615eae-b90c-420b-adee-2ca35896caf6 (accessed on 5 May 2022). 6 https://open.canada.ca/data/en/
dataset/6e98ad40-c58a-4225-a20e-27f243081929 (accessed on 5 May 2022). 7 https://open.canada.ca/data/en/
dataset/7625e09a-edd9-4212-8aa0-2b6e53dea494 (accessed on 5 May 2022). 8 https://open.canada.ca/data/en/
dataset/44ced2fa-afcc-47bd-b46e-8596a25e446e (accessed on 5 May 2022). 9 https://open.canada.ca/data/en/
dataset/0b88062f-ebbe-46c6-ab19-54fd226e9aa7 (accessed on 5 May 2022). 10 https://open.canada.ca/data/en/
dataset/cebc283f-bae1-4eae-a91f-a26480cd4e4a (accessed on 5 May 2022). 11 https://pavics.ouranos.ca (accessed
on 5 May 2022). 12 https://open.canada.ca/data/en/dataset/3d282116-e556-400c-9306-ca1a3cada77f (accessed
on 5 May 2022).

Modeled meteorological data for the 1950–2100 period in three climate change scenar-
ios are available at the Power Analytics and Visualization for Climate Science (PAVICS)
platform (https://pavics.ouranos.ca/index.html (accessed on 16 May 2022)). The gridding
process of meteorological data was accomplished by the Natural Resources Canada (NR-
Can) using the Australian National University Spline (ANUSPLIN) implementation of the
trivariate thin plate splines interpolation method and considering the effects of geospatial
locations and altitudes [45]. These modeled meteorological data have been downscaled
on a daily basis by applying climate model projections of temperature and precipitation
using the Bias Correction/Constructed Analogues with Quantile delta mapping reorder-
ing (BCCAQv2) method, which preserves the projected changes at each quantile during

https://open.canada.ca/data/en/dataset/0fe65119-e96e-4a57-8bfe-9d9245fba06b
https://open.canada.ca/data/en/dataset/808b84a1-6356-4103-a8e9-db46d5c20fcf
https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b87956c07977
http://www.snb.ca/geonb1/e/DC/RW.asp
https://open.canada.ca/data/en/dataset/4e615eae-b90c-420b-adee-2ca35896caf6
https://open.canada.ca/data/en/dataset/4e615eae-b90c-420b-adee-2ca35896caf6
https://open.canada.ca/data/en/dataset/6e98ad40-c58a-4225-a20e-27f243081929
https://open.canada.ca/data/en/dataset/6e98ad40-c58a-4225-a20e-27f243081929
https://open.canada.ca/data/en/dataset/7625e09a-edd9-4212-8aa0-2b6e53dea494
https://open.canada.ca/data/en/dataset/7625e09a-edd9-4212-8aa0-2b6e53dea494
https://open.canada.ca/data/en/dataset/44ced2fa-afcc-47bd-b46e-8596a25e446e
https://open.canada.ca/data/en/dataset/44ced2fa-afcc-47bd-b46e-8596a25e446e
https://open.canada.ca/data/en/dataset/0b88062f-ebbe-46c6-ab19-54fd226e9aa7
https://open.canada.ca/data/en/dataset/0b88062f-ebbe-46c6-ab19-54fd226e9aa7
https://open.canada.ca/data/en/dataset/cebc283f-bae1-4eae-a91f-a26480cd4e4a
https://open.canada.ca/data/en/dataset/cebc283f-bae1-4eae-a91f-a26480cd4e4a
https://pavics.ouranos.ca
https://open.canada.ca/data/en/dataset/3d282116-e556-400c-9306-ca1a3cada77f
https://pavics.ouranos.ca/index.html
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quantile mapping at coarser scales [46]. The modeling process considered three climate
change scenarios, reflected by three Representative Concentration Pathways (RCPs), namely
RCP 2.6, RCP 4.5, and RCP 8.5, representing low, moderate, and high releases of greenhouse
gases and other emissions into the atmosphere, respectively [47]. In this study, we obtained
the meteorological data as summarized by standard seasons: winter (December, January,
and February), spring (March, April, and May), summer (June, July, and August), and fall
(September, October, and November). We investigated temperature and total precipitation
in last fall (namely the fall before the spring flood in a certain year), winter, and spring,
as well as days with heavy rainfall in spring (Table 1). Because the overall purpose of the
meteorological simulation was to ensure that long-term statistical trends reflect historical
observations, the modeled historical climate under various climate change scenarios all
had similar signals [47]. For future flood forecasts, we applied meteorological values under
three climate change scenarios to model predictions.
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Figure 1. (a) Study area in southern New Brunswick, Canada; and (b) flooding extent produced
from Synthetic Aperture Radar imagery in years 2008, 2015, 2018, and 2019. Digital Elevation Model
data, watershed and waterbody data, and historical flood data were retrieved from Canadian Open
Government Portal [43,44,48].
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Figure 2 shows the raw meteorological data in the four historical years of the flood
events (namely 2008, 2015, 2018, and 2019) and the forecasted values under three climate
change scenarios for the future years of 2040, 2060, 2080, and 2100. Temperature-related
variables, namely minimum, mean, or maximum daily temperature summarized by sea-
sons, had a generally increasing trend based on the forecasts, with the scenario RCP 8.5
(i.e., high releases of greenhouse gases and other emissions) most dramatically (Figure 2).
On the other hand, precipitation-related variables, such as total precipitation among differ-
ent seasons and wet days over an amount threshold in spring, involved high variability
and more uncertainties in their forecasts (Figure 2).
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Figure 2. Meteorological data used for the past years of 2008, 2015, 2018, and 2019 and forecasted
values under three climate change scenarios for the future years of 2040, 2060, 2080, and 2100.
Raw data were retrieved from the Power Analytics and Visualization for Climate Science (PAVICS)
platform (https://pavics.ouranos.ca/index.html (accessed on 16 May 2022)). Variable abbreviations
refer to Table 1.

The detailed data quantization and computation processes are explained in the follow-
ing sections.

4. Data Computation in DGGS
4.1. DGGS Configuration

The ISEA3H DGGS was orientated with the latitude of the pole (λ) = 37.6895◦, lon-
gitude of the pole (ϕ) = −51.6218◦, and azimuth (α) = −72.6482◦. The ISEA3H DGGS at
levels 3 and 4 is visualized in Figure 3a. Following the Nyquist-Shannon sampling theo-
rem [49], we used DGGS level 23 as the baseline in modeling processes, where the cell area
was about 541.80 m2. Given that most of the raw data were at 30 m resolution, 900 m2 in

https://pavics.ouranos.ca/index.html
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area, the quantization at the finest resolution ensured no information loss from the original
signals [49]. Levels 19 and 21 were also included in the modeling as two representative
coarser levels, where the cell sizes were 43,885.62 and 4876.18 m2 in area, respectively, so
that three modeling resolutions roughly increased at a factor of 10. The 2400 sample points
described in Section 3 were quantized in the ISEA3H DGGS by converting their longitude-
latitude coordinates to cell addresses of the nearest cell centroids at levels 19, 21, and 23,
using the dggridR library [50]. The workflow of data computation in DGGS is shown at the
top part of Figure 4, which includes the quantization of continuous variables and categorical
variables, as well as the production of topographical and hydrological parameters.
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4.2. Variable Quantization

A bilinear interpolation over cell centroid locations was adopted to quantize the
Digital Terrain Model (DTM), including the probability of the annual minimum snow and
ice, stand crown closure, total forest volume, and normalized difference vegetation index
(Table 1), which were all continuous values and originally encoded in the GeoTIFF format,
to the ISEA3H DGGS at level 23. The nearest four pixel centers were considered as inputs
for each hexagonal centroid during the bilinear interpolation process (Figure 5a). A mean
aggregation was applied to quantize the cells at coarser levels, meaning using the mean
value of the seven child cells to quantize their parent cell at the immediately coarser level
(Figure 3b). A nearest-neighbor interpolation (Figure 5b) was used to quantize categorical
variables including the land cover classes, soil types, surficial geology types, and binary
wetland classification at each modeling level of the DGGS (Table 1). All datasets, originally
in vector formats, were converted through a rasterization process at 30 m resolution before
quantization. By applying a binary classification on the quantized land cover classes, the
impervious areas were detected and encoded in the DGGS (cells assigned the value 1 versus
0 for the non-impervious areas). The major permanent waterbodies (and road networks)
were rasterized at 30 m resolution and then quantized by applying a nearest-neighbor
interpolation on the ISEA3H DGGS at the three modeling resolutions (levels 19, 21, and 23).
The number of hexagonal cells between the nearest waterbody (or road network) cell and
the target cell was used as the distance to the nearest waterbody (or road network) in the
DGGS. All cells quantized as permanent waterbodies or road networks were assigned a
zero distance. All meteorological data, originally organized in the NetCDF format at 300-
arcsecond spatial resolution, were quantized in the ISEA3H DGGS by applying a bilinear
interpolation at the three levels (levels 19, 21, and 23) for each modeling year (years 2008,
2015, 2018, and 2019). Because of the property of discreteness, DGGS cells in the study area
were divided into chunks and the quantization processes of cell chunks were conducted in
a parallel manner.
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4.3. Topographical and Hydrological Parameters Computation

Both the topographical parameters (aspect, slope, curvature, and roughness) and
topographical indices (terrain roughness index and topographic position index) were
calculated based on the quantized DTM values at each modeling level (levels 19, 21, and
23), following their definition equations [51,52] and the methodologies introduced by Li,
McGrath and Stefanakis [15]. Specifically, the slope and aspect values were computed by
the finite-difference algorithm (Figure 6b), where elevation differences of each central cell’s
six neighbors along three axes of the hexagonal grid were projected to two orthogonal
axes, and the slope and aspect of the central cell were calculated based on the combination
of two orthogonal partial derivatives [15,53]. Each neighbor cell was assigned the same
weight in the computation because of the uniform adjacency of cells in a hexagonal grid.
Li, McGrath and Stefanakis [15] implemented and compared five algorithms to derive
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slope and aspect values on hexagonal grids and the finite-difference algorithm stood out
because of its short computation time. The roughness was calculated within the first-
ring-neighborhood, i.e., the six direct neighbors for each central cell. As suggested by
Li, McGrath and Stefanakis [16], the D6 algorithm was used to produce the flow routing
grid (Figure 6c), where the flow of a center cell was always routed to the neighboring cell
with the lowest elevation, following the depression-filling process by the Priority-Flood
algorithm [16,54,55]. Then, the flow accumulation was computed by recursively examining
the inflow areas for each cell based on the flow routing grid. The hydrological indices
(stream power index and topographic wetness index) were computed accordingly, with
the flow accumulation and slope gradient as input parameters [16,56,57]. Except for the
depression-filling process and the calculation of flow accumulation, which required us to
consider the distant cells at each iteration, production of topographical and hydrological
parameters was parallelized taking advantage of the discreteness of DGGS cells.
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5. Flood Modeling

The flood modeling in this study involved several steps, including the variable im-
portance analysis, correlation test, model training, model evaluation, model comparison,
and model predictions and visualization, as shown at the bottom part of the workflow in
Figure 4. The detailed modeling process is explained below.

5.1. Variable Importance Analysis

We included the individual-year modeling and combined-year modeling in the vari-
able importance analysis, modeling training, and model evaluation processes. The individual-
year modeling was based on 600 sample points in each historic year, and the combined-year
modeling was conducted using all four years’ sample points. Because of the large group of
candidate predictors, we conducted a variable importance analysis on full sample datasets
using R library VSURF [58] to determine the most important predictors across the mod-
eling years and levels. VSURF employs a two-stage strategy essentially based on the RF
algorithm and returns two subsets of important variables: the first subset is used for model
interpretation (hereafter referred to as “interp” variables), and the second subset, containing
refined variables by avoiding redundancy, is used for model prediction (hereafter referred
to as “pred” variables; [58]). We applied the VSURF algorithm to individual-year model-
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ing and combined-year modeling at the three modeling resolutions. The “pred” variable
list was considered in training both individual-year models and combined-year models.
To further reduce the redundancy of predictor variables, additional Pearson correlation
tests were run among each candidate predictor list for both individual-year modeling
and combined-year modeling. Highly correlated variables (r > 0.7) with lower variable
importance were filtered out unless they were in different variable categories according to
Table 1.

5.2. Model Training, Evaluation, and Comparison

Based on 70% of sample data with finalized predictor lists, individual-year models
and combined-year models were trained by RF, ANN, MLP, and SVM algorithms using the
R library Caret [59] at each modeling level of the DGGS. Specifically, “rf”, “nnet”, “mlp”,
and “svmRadial” were used as the “method” parameters and a bootstrap resampling
was applied in the Caret’s model training procedures. The 70% training data shared the
same resampling profile for each machine learning algorithm. Model training processes of
these four algorithms were controlled using the same set of controlling parameters, where
“classProbs = True” guarantees class probabilities should be calculated for held-out samples
during the resampling, “summaryFunction = twoClassSummary” allows the sensitivity,
specificity, and area under the Receiver Operating Characteristic (ROC) curve to be com-
puted in the model results, and “allowParallel = True” governs that the modeling process
uses the parallel processing. Centering and scaling were used to preprocess the training
data before each modeling process. Models were tuned by a set of key parameters, and
the final model was determined algorithmically with the optimized ROC value in model
iterations. The initial values of key parameters and the optimization procedure applied to
both individual-year models and combined-year models. The initial key parameters used
in four algorithms are listed as follows.

• RF (“rf”): “ntree” = 500, and “mtry” = square roots of number of predictor variables;
• ANN (“nnet”): “size” = 5, and “decay” = 0;
• MLP (“mlp”): “size” = 5;
• SVM (“svmRadial”): “sigma” = 0.5, and “C” = 1.

Model performance metrics including the accuracy, kappa, and Area Under the ROC
Curve (AUC) were calculated based on the rest 30% testing data, resulting from each of
the four machine learning algorithms, for all individual-year models and combined-year
models at three modeling levels. The accuracy and kappa were calculated as [60]:

accuracy =
TP + TN

TP + FP + TN + FN

kappa =
(TP + TN)− ((TP + FN)(TP + FP) + (FP + TN)(FN + TN))

1 − ((TP + FN)(TP + FP) + (FP + TN)(FN + TN))

where TP is the true positive, meaning the number of samples correctly classified as flooding
sites; TN is the true negative, calculated as the number of samples correctly classified as
non-flooding sites; FP is the false positive, which is the number of samples incorrectly
classified as flooding sites; and FN is the false negative, computed as the number of samples
incorrectly classified as non-flooding sites.

In addition, the four machine learning algorithms on combined-year models were
compared to each other by summarized ROC, sensitivity, and specificity of each resam-
pling iteration in model training processes. These metrics were comparable due to the
same resampling profile during the model training. Paired t-tests were also conducted to
quantitatively assess the difference among the machine learning algorithms in the unit of
the average resampled area under the ROC curve.
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5.3. Ensemble Model and Predictions

To compose a standard model across resolutions for flood predictions, we finalized
a list of predictor variables by examining those common in the “interp” lists based on
combined-year data across multiple resolutions after filtering out the highly correlated
variables. An ensemble model was then built based on combined-year data, combining
four machine learning algorithms by the generalized linear model method using “caret-
Stack” strategy in the caretEnsemble library [61]. The ensemble model was trained by
the combined-year data and applied to all DGGS cells in the entire study area with the
meteorological data in each year of 2008, 2015, 2018, and 2019 at the three resolutions 19,
21, and 23. In addition, we replaced the meteorological data in the model with forecasted
values under three climate change scenarios for the future years of 2040, 2060, 2080, and
2100 to better understand the impact of climate change on flood risks.

6. Results
6.1. Top Predictor Variables

Table 2 summarizes the top predictor variables by both “interp” and “pred” steps
according to the VSURF algorithm for all individual-year models and combined-year
models at all modeling levels of the DGGS. Although different sets of variables were
identified in different years or resolutions due to different group of sample points used,
the important predictor variables appeared repeatedly in the individual-year models and
combined-year models.

In general, elevation was the most important predictor variable, followed by distances
to the nearest permanent waterbodies. With all 32 variables as input to the VSURF algo-
rithm, the mean variable importance of elevations in combined-year models was 0.283
(σ = 0.002), 0.285 (σ = 0.003), and 0.292 (σ = 0.002), and the out-of-bag errors were 0.09, 0.11,
and 0.11, at levels 19, 21, and 23, respectively. The variable importance of elevations was
much higher than that of the second important variable, distances to the nearest permanent
waterbodies, whose mean variable importance was 0.042 (σ = 0.001), 0.053 (σ = 0.001), and
0.052 (σ = 0.001) in combined-year models at levels 19, 21, and 23, respectively.

The mean temperature in spring and the mean temperature in last fall (namely the fall
before the spring flood in a certain year) were the top two meteorological variables, at least
one of which was included in each individual-year model and combined-year model at
all DGGS modeling levels (Table 2). In addition, the mean temperature in winter and the
total precipitation in last fall were contained by “interp” models based on combined-year
data at the three resolutions (Table 2). Other relatively important predictor variables were
the slope, roughness, probability of the annual minimum snow and ice presence, the mean
daily maximum temperature in spring, total forest volume, and surficial geology types,
which were all included in the “interp” of at least one individual-year model across three
resolutions (Table 2).

The Pearson correlation tests were conducted to further reduce the variable redun-
dancy for model prediction. A high correlation (r > 0.7) was commonly observed among the
terrain-derived variables of slope, curvature, roughness, and terrain roughness index, the
hydrological variables flow accumulation and topographic wetness index, and a few meteo-
rological variables such as mean temperature in spring, mean daily maximum temperature
in spring, and mean temperature in last fall. The highly correlated predictor variables
(r > 0.7) with lower variable importance were removed from the variable lists determined
by the VSURF algorithm for both the individual-year models and combined-year models.
In addition, in a few individual-year model tests, elevations and temperature-related mete-
orological variables (e.g., mean temperature in spring) had a negative correlation coefficient
smaller than −0.7, in which cases these variables were retained in the model predictors
given that they were classified in different variable categories. Table 3 summarizes the final
predictor variable lists at the three DGGS modeling resolutions.
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Table 2. Selected variables by VSURF library for individual-year models and combined-year models
at the three DGGS modeling levels.

Level Model Year Step Selected Variables 1

Level 19

Year 2008
interp 2 dtm, ftgmean, stgmean, nhn, rgh, twi
pred 3 dtm, ftgmean, stgmean, nhn, rgh, twi

Year 2015
interp dtm, ftgmean, nhn, stgmean, tri
pred dtm, ftgmean, nhn

Year 2018
interp dtm, nhn, twi, stgmean, flacc, lc
pred dtm, nhn, twi, stgmean

Year 2019
interp dtm, nhn, twi, slp, msi, geo, tri, stgmean, rgh, stxmean, tfv,

flacc, curv, ndvi
pred dtm, nhn, twi, msi, geo, stgmean

Combined-year interp dtm, nhn, twi, rgh, tri, slp, stgmean, msi, geo, stxmean,
flacc, lc, tpi, wtgmean, curv, spi, tfv, ndvi, fprcptot

pred dtm, nhn, twi, stgmean, rgh

Level 21

Year 2008
interp dtm, ftgmean, nhn, stgmean, rgh
pred dtm, ftgmean, nhn, stgmean, rgh

Year 2015
interp dtm, ftgmean, nhn, rgh, slp, stgmean, tri, ftnmean, tfv, lc,

ndvi, msi, wtgmean, stxmean, scc
pred dtm, ftgmean, nhn, stgmean, tfv

Year 2018
interp dtm, nhn, stgmean
pred dtm, nhn, stgmean

Year 2019
interp dtm, nhn, stgmean, geo, rgh, msi
pred dtm, nhn, stgmean

Combined-year interp dtm, nhn, rgh, tri, stgmean, geo, slp, twi, msi, stxmean,
wtgmean, curv, spi, tpi, fprcptot, ndvi, tfv, wprcoptot

pred dtm, nhn, rgh, tri, stgmean, twi, stxmean, ndvi, wprcptot

Level 23

Year 2008
interp dtm, ftgmean, nhn, stgmean, slp, geo, rgh, sr10
pred dtm, ftgmean, nhn, stgmean, slp, rgh, sr10

Year 2015
interp dtm, nhn, ftgmean
pred dtm, nhn, ftgmean

Year 2018
interp dtm, nhn, stgmean
pred dtm, nhn, stgmean

Year 2019
interp dtm, nhn, stgmean, geo, stxmean, msi, tfv
pred dtm, nhn, stgmean, tfv

Combined-year interp
dtm, nhn, stgmean, rgh, slp, geo, tri, msi, stxmean, spi,
wtgmean, tfv, wprcptot, fprcptot, twi, ftgmean, ndvi, lc,
sprcptot, scc

pred dtm, nhn, stgmean, rgh, geo, stxmean, spi, tfv, ndvi
1 Variable abbreviation is referred to in Table 1, ordered by their relative variable importance (high to low).
2 Returned variable list by VSURF library for model interpretation. 3 Returned variable list by VSURF library for
model prediction.

6.2. Individual-Year Models and Combined-Year Models

For both individual-year models and combined-year models, the accuracy, kappa, and
AUC were computed based on the 30% testing data. According to the model performance
metrics, the performance was relatively the same at all three levels, where the accuracy,
kappa, and AUC of the four machine learning algorithms were greater than 0.89, 0.79,
and 0.93, respectively (Figure 7). The performance of the combined-year model generally
represented the average performance of the four individual-year models at a certain DGGS
level (Figure 7). The individual-year model in 2018 had a slightly lower model performance,
as reflected by the kappa, at the three DGGS levels (Figure 7).
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Table 3. Final predictor variables for individual-year models and combined-year models at the three
DGGS modeling levels.

Level Model Year Selected Variables 1

Level 19

Year 2008 dtm, ftgmean, nhn, rgh, twi
Year 2015 dtm, ftgmean, nhn
Year 2018 dtm, nhn, stgmean, twi
Year 2019 dtm, nhn, twi, msi, geo, stgmean
Combined-year dtm, nhn, twi, stgmean, rgh

Level 21

Year 2008 dtm, ftgmean, nhn, rgh
Year 2015 dtm, ftgmean, nhn, tfv
Year 2018 dtm, nhn, stgmean
Year 2019 dtm, nhn, stgmean
Combined-year dtm, nhn, rgh, stgmean, twi, ndvi

Level 23

Year 2008 dtm, ftgmean, nhn, slp, geo, sr10
Year 2015 dtm, nhn, ftgmean
Year 2018 dtm, nhn, stgmean
Year 2019 dtm, nhn, stgmean, tfv
Combined-year dtm, nhn, stgmean, rgh, geo, spi, tfv, ndvi

1 Variable abbreviation is referred to in Table 1, ordered by their relative importance (high to low).
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Figure 7. Accuracy, kappa, and AUC of individual-year models and combined-year models using
four machine learning algorithms, Artificial Neural Networks (ANN), Multilayer Perceptron (MLP),
Random Forests (RF), and Support Vector Machine (SVM) at the three modeling levels.

Figure 8 shows the ROC, sensitivity (i.e., true positive rate), and specificity (i.e., true
negative rate) of the combined-year models using the four machine learning algorithms
during the iterative model training process at the three levels. Generally, the ANN had the
best performance at level 19, and the RF performed the best at levels 21 and 23 (Figure 8).
The ANN led to the highest ROC and sensitivity at level 19, and the RF had the highest
ROC and specificity at levels 21 and 23, in terms of the mean value (Figure 8). At finer
resolutions, significant differences (p < 0.05) were observed in more paired t-tests among
machine learning algorithms (Figure 9). Specifically, three model pairs’ performances
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were significantly different (p < 0.05) in terms of ROC and specificity at level 19 while five
model pairs showed significant differences at the finest level 23 (Figure 9). In terms of the
calculated sensitivity, none of the models were significantly (p < 0.05) different at level 19,
and two and three pairs of models had significant differences at levels 21 and 23 (Figure 9).
Over the three levels, SVM led to the lowest specificity, which was significantly different
(p < 0.05) from the other three machine learning algorithms (Figure 9).
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6.3. Predicted Floods by Ensemble Models with Historical Meteorological Data

The predictor variables included in the ensemble model were the elevation, distances
to the nearest permanent waterbodies, mean temperature in spring, roughness, surficial
geology types, probability of the annual minimum snow and ice, stream power index,
mean temperature in winter, total forest volume, total precipitation in last fall, normalized
difference vegetation index, and topographic wetness index, ordered by their general
importance. Tested by 30% of the sample data, the model performance of the ensemble
model remained at a high level, with an accuracy of 0.93, 0.96, and 0.96 at levels 19, 21,
and 23, respectively. The predicted flooding area in the years 2008, 2015, 2018, and 2019
was calculated by multiplying the DGGS cell size at a certain resolution and the number of
cells predicted to be flooded with a probability higher than 50%. The average forecasted
flooding area was 1360.47, 1342.54, 1484.10, and 1381.87 km2 across the three resolutions in
the years 2008, 2015, 2018, and 2019, respectively, which was higher than the observation
especially in the years 2008 and 2015.

Figure 10 demonstrates the spatial distribution of the true positive, true negative, false
positive, and false negative cells by comparing the forecasted results to observations at
the three levels. In 2008, the cells with false positives, meaning to be predicted as flooding
cells while without a flooding observation, were mainly clustered in the northeast region
(area A in Figure 10), which was likely due to the incomplete flooding observation around
this area in 2008 (Figure 1b). The false positive cells in 2015 were congregated in area B
(Figure 10) which was low in elevation and was not reported as a flooding area based on the
historical flooding observation (Figure 1b). Area C experienced false negative predictions
in years 2015, 2018, and 2019 at level 19, while such false predictions were mitigated at finer
resolution levels 21 and 23 (Figure 10).
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6.4. Predicted Floods by Ensemble Models with Future Meteorological Conditions

The mean temperature in spring, mean temperature in winter, and total precipitation
in last fall (namely the fall before the spring flood in a certain year) were three meteorolog-
ical variables included in the ensemble model, ordered by their relative importance. We
predicted future flooding areas using the ensemble model by adding forecasted meteoro-
logical variables step-wisely based on their relative variable importance and compared the
predicted area with observed flooding in 2019, 1030.26 km2 in area as the baseline, because
it was the most recent major flood event in the study area.

With the mean temperature in spring as the only meteorological predictor changing
over time in the model, the predicted flooding area increased with higher RCPs over the
years at three resolutions (Figure 11a). It was noted that the mean temperature in spring
was forecasted to be higher in higher-concentration climate change scenarios (Figure 2),
revealing its positive influence on flood risks. The predicted flooding area in the optimistic
climate change scenario, namely RCP 2.6, was the lowest in 2060 and highest in 2100 at all
three resolutions (Figure 11a), in line with the changing trend of mean temperature in spring
in RCP 2.6 over the years (Figure 2). A greater difference in predicted flooding areas among
climate change scenarios was shown at finer resolutions (Figure 11a). For example, the pre-
dicted flooding area in 2060 ranged from 1856.32 to 2831.98 km2 (180–275% of 2019 flooding
area), 1649.51 to 3143.09 km2 (160–305% of 2019 flooding area), 1589.30 to 3351.62 km2

(154–325% of 2019 flooding area) among three climate change scenarios at levels 19, 21, and
23, respectively (Figure 11a).

When adding the second and third meteorological variables, namely mean tempera-
ture in winter and total precipitation in last fall in model prediction, the predicted flooding
area generally decreased at all three modeling levels (Figure 11). The highest flooding area
prediction over the climate change scenarios across the years was 2895.03, 3173.20, and
3348.34 km2 with the first meteorological variable in model prediction (Figure 11a); 2338.69,
2132.64, and 2070.82 km2 with the first two meteorological variables in model prediction
(Figure 11b); and 2091.43, 1648.42, and 1576.30 km2 with all three meteorological variables
in model prediction (Figure 11c), at levels 19, 21, and 23, respectively.

Moreover, when step-wisely adding the meteorological variables to the prediction
model, the differences among the scenarios were gradually reduced with regard to the
predicted flooding area, especially at level 23 (Figure 11). At level 23, the range (differences
between the minimum and maximum) of predicted flooding areas in multiple climate
change scenarios was 669.67, 1761.74, 947.84, and 525.43 km2 when the mean temperature
in spring was included as the only changing variable in the model over time, and 82.42,
20.61, 175.14, and 113.33 km2 when all three meteorological variables were included in
the model, in 2040, 2060, 2080, and 2100, respectively (Figure 11). Figure 12 visualizes the
predicted flooding extent and probabilities of flooding results from the ensemble model for
all three meteorological variables (i.e., Figure 11c) under three climate change scenarios
around Fredericton, New Brunswick, in 2040, 2060, 2080, and 2100 at level 23.
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Figure 11. Predicted flooding area by ensemble models under three climate change scenarios with
forecasted (a) mean temperature in spring; (b) mean temperature in spring and mean temperature
in winter; and (c) mean temperature in spring, mean temperature in winter, and total precipitation
in last fall, in the future years of 2040, 2060, 2080, and 2100 at the three levels. Bars are labeled by
the ratio between the predicted flooding area and the observed flooding area in 2019 (1030.26 km2)
which is marked with horizontal, dashed lines in the plots.
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7. Discussion
7.1. Influencing Factors and Forecasts of Flood Risks

Elevation and proximity to permanent waterbodies were identified as the most impor-
tant influencing factors on flood risks, by investigating not only individual years’ data but
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also combined years’ data. Locations with lower elevations and closer to permanent water-
bodies tend to be vulnerable to flood risks, as visualized in the flooding maps (Figure 12).
The topographical parameters describing the complexity of terrain surfaces, such as the
roughness, slope, and terrain roughness index, showed relatively high importance in the
model interpretation compared to the other non-climate variables. These determined top
influencing factors were in agreement with other research on inland floods using machine
learning methods (e.g., [17–19]).

In terms of the climate conditions, the highly correlated factors of mean temperature
in spring and mean temperature in last fall were essential factors in flood risks. Based
on all four years’ sampling data, the variable importance of the mean temperature in
spring was higher than that of the mean temperature in last fall and thus included in
the ensemble model for flood predictions. According to the forecasted climate conditions
under three emission scenarios, the mean temperature in spring tends to increase in higher-
concentration emission scenarios. We noticed that the predicted flooding extent was larger
in higher RCP scenarios when including the mean temperature in spring as the only
changing meteorological variable in the model, which reflected the positive effect of mean
temperature in spring on flood risks. As reported by the Government of New Brunswick,
snow melt and ice jams are significant causes of New Brunswick floods in spring, where
increasing temperature and heavy rainfall are the main triggers for flood events [20]. We
also found that with the forecasted mean temperature in winter and total precipitation
of the last fall added to the prediction model, the projected flood risks were mitigated
over time. The flooding extent can be 135% to 203% of the 2019 flood area including three
meteorological factors in the model by the year 2100. Nevertheless, it should be noted
the purpose was not to provide a specific flooding susceptibility prediction in the future
80 years, which cannot be validated at the present, but to understand the possible impact
of climate change on flood risks by predicting future flooding extent. Three climate change
scenarios contained different hypotheses of how nature or society will behave in terms of
greenhouse gas emissions.

The model performance remained at high levels, as suggested by performance metrics
calculated based on 30% testing data for both individual-year models and combined-year
models. Nonetheless, flooding extent can be overestimated by applying the ensemble
model to historical flood estimates, especially in the years 2008 and 2015 when relatively
less flooding area was derived and digitalized from SAR imagery. The quality of flood
extent products, used as observation data in this paper, was affected by a few factors such
as sensor parameters and environmental conditions at the time of image acquisition, which
can impose limitations on model predictions [62].

7.2. Effects of Modeling Resolutions

We conducted the flood modeling at levels 19, 21, and 23 in the ISEA3H DGGS where
the cell size was approximately reduced by a factor of 9 between levels 19 and 21, and levels
21 and 23. Top explanatory variables generally agreed among the three levels, especially
when combining the four years of data in one model. The model performance was overall
consistent across the three levels based on testing data. Based on training data, four tested
machine learning algorithms showed more differences at finer resolutions in terms of
model performance metrics. By applying forecasted climate conditions to the ensemble
model under three emission scenarios in the future, it was found that the differences in
predicted flooding areas were most vulnerable to various emission scenarios at the finest
modeling resolution. More specifically, predictions with forecasted mean temperature in
spring showed the greatest difference among climate change scenarios in terms of flooding
area at level 23. On the other hand, having mean temperature in spring, mean temperature
in winter, and total precipitation in last fall in the ensemble model led to the least difference
in projected flooding area among climate change scenarios at the finest resolution.
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7.3. Flood Modeling in Hexagonal DGGS

In this research, we utilized the ISEA3H DGGS as a standardized, scalable data fabric
and applied data mining algorithms in external libraries to solve a real-world problem,
flood mapping. Although this was not the first attempt to model flood inundation by using
general DGGS, this study managed to standardize multi-source geospatial data, derive
parameters via analytical operations, and retrieve data at multiple resolutions in a pure
hexagonal DGGS environment, which was not accomplished in the past. Specifically, we
computed topographical and hydrological parameters such as the slope, aspect, roughness,
curvature, flow direction, and flow accumulation, as well as topographical or hydrological
indices including terrain roughness index, topographic position index, stream power index,
and topographic wetness index directly in the DGGS environment based on the hexagonal
geometries at multiple scales. Additionally, distances to nearby permanent waterbodies
and roads were represented by the number of hexagonal cells at a certain resolution. One or
more explanatory variables mentioned above were involved in the individual-year models,
combined-year models, and ensemble models in this paper. Previously, a height above the
nearest drainage flood risk modeling system was developed based on a hexagonal DGGS,
while a few input parameters like drainage accumulation and watershed boundaries were
produced upon rectangular grid meshes, and the data values were then converted to the
DGGS platform [10]. The quantization and production of explanatory factor values directly
in a DGGS can improve the consistency of the modeling process and reduce uncertainty
propagation. Because of the discrete property of DGGS cells, the quantization process and
most of the analytical operations in DGGS can be appropriately conducted in a parallel
fashion, which can lower the wall-clock time of data computation.

We demonstrated the application of several machine learning algorithms to DGGS-
driven datasets in the flood mapping domain. The linkage to external machine learning
libraries, as shown in this paper, was feasible given that the data mining algorithms were
based on a training dataset that consisted of individual DGGS cells at a certain resolution.
The aperture of 3 was particularly employed in the hexagonal DGGS, and the method-
ology proposed in this paper can be adjusted to other hexagonal DGGS with a higher
aperture, such as 4 or 7, where the effects of modeling resolution can be more apparent.
On the other hand, the incorporation of DGGS and bottom-up predictive models such as
cellular automata and agent-based modeling requires further development because the
neighborhood relationship over the grid cells is an essential component of the modeling
process. Although not using a hierarchical grid system, Douass and Kbir [14] gave an
example of calculating water flow dynamics and delineating flood zones with the cellular
automata-based algorithm in hexagonal grid meshes. Conducting these bottom-up pre-
dictive models in a hexagonal DGGS environment can be promising if the neighborhood
navigation is supported by a cell indexing mechanism, which is exemplified by the Quadri-
lateral 2-Dimensional Integer (Q2DI) indexing implemented in the DGGRID library [63].
Regarding the modeling at multi-resolutions, the concept of neighborhood navigation
needs to be extended across resolutions, or such hierarchical operators can be generalized
in a topology-independent manner, as noted by Kiester and Sahr [64].

8. Conclusions

This work focused on multi-scale flood mapping in southern New Brunswick by
four separate machine learning algorithms including the RF, ANN, MLP, and SVM, and
the ensemble model combing these four algorithms based on both four individual-years’
observation data and combined-years’ data. A total of 32 explanatory factors in five cat-
egories were involved in the initial variable importance analysis, and subsets of them
were included in the following modeling process at multiple resolutions according to their
relative importance and correlations. We also estimated the future flooding extent under
three climate change scenarios by replacing the historical climate conditions with their
forecasted values in trained ensemble models. The ISEA3H DGGS was adopted as the base
standardized data fabric for predictor variable quantization and computation, which bene-
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fited the integration process of multi-source geospatial data and provided the hierarchical
framework for multi-scale analysis. Furthermore, producing explanatory factor values,
such as roughness and flow accumulation, directly in a DGGS can improve the consistency
of modeling processes and help to avoid further uncertainty propagation. Our results
showed that elevations and proximity to permanent waterbodies were key factors affecting
flood risks in the study area, suggested by both individual-year models and combined-year
models with high model performance. The rising mean temperature in spring can lead to
higher flood risk, considering that snow melt is one of the primary trigger factors of floods
around our study area. Differences in model performance among four tested machine
learning algorithms became more obvious at finer modeling resolutions. The results of this
study helped to identify the top influencing factors and understand the impact of climate
change on flood risks, which was meaningful in future flood warnings. Our research also
demonstrated the feasibility of incorporating external machine-learning libraries with a
DGGS-based data framework. Future studies can explore the advanced algorithms in
flood modeling, such as MAXENT, XGBoost, and MARS, and more development is needed
for the incorporation of bottom-up predictive models involving topological relationships.
The methodology proposed in this research can also be adjusted to fit different DGGS
configurations and the comparison of the modeling results between various DGGS can be
examined in the future.
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Abbreviations

Acronyms Description
ANN Artificial Neural Networks
ANUSPLIN Australian National University Spline
BCCAQv2 Bias Correction/Constructed Analogues with Quantile delta mapping reordering
DGGS Discrete Global Grid Systems
DTM Digital Terrain Model
GIS Geographic Information Systems
ISEA3H Icosahedral Snyder Equal Area Aperture 3 Hexagonal Grid
LiDAR Light Detection and Ranging
MARS Multivariate Adaptive Regression Splines
MAXENT Maximum Entropy
MLP Multilayer Perceptron
NRCan Natural Resources Canada
PAVICS Power Analytics and Visualization for Climate Science
Q2DI Quadrilateral 2-Dimensional Integer
RCP Representative Concentration Pathway
RF Random Forest
ROC Receiver Operating Characteristic
SAR Synthetic Aperture Radar
SVM Support Vector Machine
XGBoost Extreme Gradient Boosting
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