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A B S T R A C T

We determined effects of local spruce budworm (Choristoneura fumiferana Clem.; SBW) population level,
proximity to sites with high SBW populations, insecticide spray, and environmental variables on SBW popula-
tions from 2014 to 2018, the outbreak initiation period in northern New Brunswick, Canada. SBW second instar
larvae (L2) per branch data collected at 1100–2000 sample points per year were used to create annual inter-
polated population rasters. Fishnet sample points extracted from these rasters were overlaid with georeferenced
layers of 46 possible predictor variables including forest composition, climate, topography, site quality, and
insecticide treatment. Results showed that local SBW population in the previous year, proximity to sites with
high SBW populations, and early spring climate were consistently the most important predictors over the 5 study
years. Simultaneous autoregressive models were used to address spatial autocorrelation when forecasting the
SBW L2 population, and a linear mixed effects model was fit to aggregate data for 2015–2018. The models
reduced spatial dependence in the residuals, and explained 68–79% of variance in annual L2 levels and 53% of
variance over the 4 years combined. Sensitivity analysis showed that locations with 5–10 more SBW L2 per
branch than observed values, or 20–40 km closer to high population sites in the previous year could have up to
24 more L2 in the current year. Cumulative degree days in April helped to estimate the upper and lower bounds
of the population. Expansion and retraction of SBW outbreak initiation were mathematically described.
Understanding which variables influence SBW outbreak initiation and population level assists in design of small
area target-specific insecticide spray applications and helps focus SBW L2 sampling on predicted outbreak hot
spots.

1. Introduction

Synchrony in insect population fluctuations often occurs at the
landscape scale, and such large-scale synchronous increases in insect
population density during one year and persistence over subsequent
years can lead to rising insect populations and outbreak initiation
(Royama et al., 2005; Liebhold et al., 2012; Bouchard et al., 2018).
Several underlying mechanisms of spatial synchrony of insect outbreaks
and local population fluctuations have been proposed, including re-
gional stochasticity, dispersal, and trophic interactions (Régnière and
Lysyk, 1995; Myers, 1998; Williams and Liebhold, 2000; Liebhold et al.,
2012). Research on various insects has shown how seasonal drought
can accelerate outbreak initiation (e.g., spruce beetle (Dendroctonus
rufipennis); Hart et al., 2017), stands with more abundant host species
attract insect initial attack (e.g., mountain pine beetle (Dendroctonus
ponderosae Hopkins); Klutsch et al., 2009), and how parasitism pro-
duces regional insect pest population patterns during the outbreak

onset phase (e.g., western tussock moth (Orgyia vetusta); Maron et al.,
2001). From a forest management viewpoint, spread of an insect out-
break can be controlled or slowed by altering forest characteristics that
have major effects on outbreak development (Robert et al., 2018). Al-
ternative strategies will be required if influence of biotic factors is weak
(e.g., Bouchard and Auger, 2014).

Major spruce budworm (Choristoneura fumiferana Clem.; SBW) out-
breaks in balsam fir (Abies balsamea L. Mill.) and spruce (Picea spp. A.
Dietr.) forests are the dominant natural disturbance in eastern North
America. SBW outbreaks beginning in the 1910s, 1940s, and 1970s
damaged 10, 25, and 55 million ha, respectively, across eastern Canada
(Blais, 1983). Another SBW outbreak began in about 2006 in northern
Québec, Canada, reaching 8.2 million ha of defoliation by 2018
(QMRNF, 2018). SBW populations spread southward and reached New
Brunswick, Canada in 2014. In this paper, we analyze the spatial pat-
terns of SBW population increases in New Brunswick from 2014 to
2018, and determine the influence of over 40 variables on SBW
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increases, assessed using overwintering second instar larvae (L2) sam-
ples on 4500–6000 tree branches per year.

Previous research has shown that forest composition, climate, to-
pography, and site quality all can influence SBW outbreak dynamics,
but with varying relative importance and consistency of relationships.
Forest composition influences include high SBW population levels oc-
curring when eggs were deposited in dense, mature softwood stands
rather than young and open mixed stands (Greenbank, 1957). Also,
higher abundance of balsam fir corresponded to more severe SBW de-
foliation (Bouchard and Auger, 2014), while higher abundance of
hardwoods (broadleaved trees) resulted in less severe defoliation (Su
et al., 1996; Zhang et al., 2018), reduced tree volume loss (Needham
et al., 1999), and decreased radial growth reduction (Campbell et al.,
2008). Climate influences include dry, warm summers increasing larval
survival, potentially leading to higher larval populations during the
flight season (Greenbank, 1957; Royama, 1984; Régnière and Nealis,
2007). High frequencies of defoliation were associated with dry June
and cool spring periods (Candau and Fleming, 2005). Spring and
summer degree days showed a strong influence on outbreak duration,
severity, and spatial variability; locations with warmer spring tem-
peratures and higher cumulative degree-days generally experienced
shorter outbreak duration and lower severity (Gray, 2008, 2013).
Proximity to previously defoliated areas positively influenced, while
elevation negatively influenced SBW defoliation during the onset of the
latest SBW outbreak in Québec (Bouchard and Auger, 2014). Stands on
moist/rich sites had 19% higher defoliation than stands on wet/poor
sites (MacKinnon and MacLean, 2003). Site quality has been shown to
influence SBW-caused mortality, with higher mortality on xeric (85%
mortality) and hydric (75%) than on mesic (45%) and sub-hydric (27%)
fir stands (Dupont et al., 1991). Research on a SBW outbreak in
northern British Columbia, Canada noted showed that increasing stand
volume, higher current needle biomass, and proximity to the nearest
river or nearest defoliation led to increased likelihood of onset of out-
breaks (Magnussen et al., 2004).

An experiment to suppress rising SBW populations before major
defoliation occurs, termed an ‘early intervention strategy’ (EIS), has
been underway in New Brunswick, Canada from 2014 to 2019
(MacLean et al., 2019). This is the first attempt of area-wide manage-
ment (all areas within the jurisdiction of the province of New Bruns-
wick) of an endemic forest insect population. The EIS approach includes
intensive monitoring of overwintering SBW to detect ‘hot spots’ of low
but rising populations and targeted insecticide treatment to prevent
spread. Following 5 years of over 420,000 ha of EIS treatments of low
but increasing SBW populations, carried out in June of each year, SBW
L2 levels across northern New Brunswick were considerably lower than
populations in adjacent Québec (MacLean et al., 2019). SBW popula-
tions in blocks treated with Bacillus thuringiensis or tebufenozide in-
secticide were consistently reduced and generally did not require
treatment in the subsequent year. SBW populations observed in a given
year are the basis for insecticide treatment strategies in the following
year (MacLean et al., 2019). Following 5 years of tests, EIS appears,
thus far, to be effective in reducing the SBW outbreak (MacLean et al.,
2019). Forecasting regions with high-level SBW populations in the
following year is a critical basis for sampling and insecticide or other
pest management tactics, and understanding the relationship of stand,
site, and climate factors to population increases is an important com-
ponent.

When performing statistical tests on ecological data, such as SBW L2
population data, the assumption of independence of residuals is often
violated, increasing Type I errors and biasing the estimation of re-
gression parameters (Dormann et al., 2007; Beale et al., 2010). Lack of
independence in the residuals can arise because either response or
predictor variables are spatially autocorrelated, i.e., objects that are
closer to each other have a tendency to be more similar than those that
are further apart (Sokal and Oden, 1978; Dale and Fortin, 2014). Spa-
tially-structured residuals may be due to: 1) omission of important

predictors in the model, 2) inappropriate model specification, or 3) a
mismatch between spatial patterns of the response and predictors (Dale
and Fortin, 2014). Accordingly, solutions to avoid statistical issues re-
sulting from spatial autocorrelation include: 1) incorporating all ne-
cessary ecological predictors to fit the model, 2) adopting generalized
linear mixed models where a random effect is used to account for the
effects of location, and 3) spatial regression that includes ‘space’ ex-
plicitly as an additional variable (Beale et al., 2010; Dale and Fortin,
2014). Spatial regression takes into account spatial dependence in the
data by adding a lagged response variable (autoregression; Anselin,
1988) or lagged covariates (i.e. autocovariate regression; Augustin
et al., 1996).

The objectives of this study were to: 1) determine variables that
influenced SBW L2 populations from 2014 to 2018, the outbreak in-
itiation phase in northern New Brunswick, and 2) test if the L2 popu-
lation in the subsequent year could be predicted by L2 distribution in
the preceding year and environmental variables. Based on previous
research, we included four categories of environmental/site variables
that might influence SBW outbreak initiation: 1) forest composition, 2)
spring and summer climatic conditions, 3) topographic characteristics,
and 4) site quality. We also included local SBW L2 population levels in
the previous year, proximity to sites with high SBW populations in the
previous year, and insecticide spray treatments in the previous two
years as influencing variables.

2. Methods

2.1. Study area

The study area was a 3,730,000 ha area in northern New Brunswick,
Canada, spanning 64° 30′ to 69° 0′ W and 46° 30′ to 48° 0′ N (Fig. 1a).
Species composition of New Brunswick forests is approximately 68%
softwood and 32% hardwood species (Erdle, 2008). SBW host species
spruce and balsam fir together comprise more than half of the forest
(55%), followed by red maple (Acer rubrum L.) and sugar maple (Acer
saccharum Marsh.) at about 15%. Roughly 20% of the forest is younger
than 20 years old, resulting from harvesting; and 45% is older than
60 years old (Erdle, 2008). In northern New Brunswick, balsam fir and
spruce are the dominant species groups (Erdle, 2008).

2.2. Data collection and preparation

SBW L2 data in New Brunswick from 2013 to 2018 were provided
by the New Brunswick Department of Energy and Resource
Development (NBERD) and the Healthy Forest Partnership EIS Research
group. In fall of each year, NBERD and forest industry staff from Forest
Protection Limited, J.D. Irving, Limited, Acadian Timber Corporation,
and Fornebu Lumber Company Inc. jointly collected L2 data from a
large number of sample points, each of which included one mid-crown
branch from each of three balsam fir or three spruce trees (2013–2015),
or a mix of balsam fir and spruce representing the stand condition
(2016–2018). From 2013 to 2018, 1136, 1503, 1561, 1649, 1964, and
1851 L2 points were sampled per year, respectively. NBERD processed
the branch samples by washing them with a sodium hydroxide solution
to destroy the hibernacula, and filtering and counting the number of
SBW L2 (Miller et al., 1971; MacLean et al., 2019). The average number
of L2 per sample point was classified into six classes: nil, trace, low,
moderate, high, and extreme (0, 0.1–3.5, 3.6–6.5, 6.6–20.5, 20.6–40.5,
and > 40.5 L2 per branch). Moderate or higher classes (> 6.5 L2 per
branch) are particularly of concern, since this is the threshold used for
insecticide intervention under the EIS approach (MacLean et al., 2019).
Across northern New Brunswick, L2 populations increased consistently
up to 2017, but declined dramatically in 2018 (Fig. 1b). SBW L2 data in
the adjacent Gaspé-Bas St. Laurent region of Québec from 2013 to
2018, provided by Gouvernement du Québec, Ministère des Forêts, de
la Faune et des Parcs and La Société de Protection des Forêts contre les
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Insectes et Maladies, were also included in the analyses. L2 data in
Québec were sampled on one < 75 cm mid-crown branch from each of
three balsam fir or spruce trees. L2 populations in the Gaspé-Bas St.
Laurent region continuously increased from 2013 to 2018 (Fig. 1b).

Point layers of the raw L2 sample data were interpolated into raster
layers at 20 m resolution using Inverse Distance Weighted (IDW)
methods (Watson and Philip, 1985). We tested interpolation methods
using the nearest 6, 12, or 24 points in calculating the interpolated cell,
and found that results were similar in Gradient Boosting Machine
(GBM) tests and statistical models, with a tendency for models with
fewer interpolated points to perform slightly poorer in terms of good-
ness-of-fit indicators. Therefore, we based interpolation on 12 points.
Fishnet L2 points, which are points at the crosses of a systematic lattice,
for each year from 2013 to 2018 were extracted from the interpolated
raster layers at a 2 km interval. A total of 9183 fishnet points were
extracted within the study area in each year. We tested both raw L2
point layers and fishnet L2 layer data in analyses.

Datasets for all the other influencing variables were available
through various sources, and necessary preprocessing was done before
analyses, as described in Table 1. These included forest composition,
climate, proximity to high L2 population sites in the previous year,
topography and site quality variables, the previous year SBW L2 po-
pulation, and insecticide spray treatments in the previous two years
(Table 1). All raster data used in the research were at 20 m resolution.

2.3. Spatial overlay analysis

Annual SBW L2 point layers from 2014 to 2018, including both the
raw sample points and fishnet points, were overlaid with geo-

referenced layers of 46 possible influencing variables (Table 1). Vari-
ables included tree species proportions of balsam fir, spruce, and
hardwood within 50 m circular buffer areas for each L2 point, using the
dominant forest layer and an area-based weighted average of species
proportions; 33 climate variables including monthly and periodic
temperatures, cumulative degree days, and precipitation; previous local
SBW population for Year N extracted from the interpolated raster in
Year N-1; proximity to moderate or higher levels of SBW L2 populations
in Year N-1 computed as distance to the nearest raw sample point with
L2 > 6.5 per branch (ProxRaw), distance to the nearest fishnet point
with L2 > 6.5 per branch (ProxGrid), and distance to the nearest cell
with L2 > 6.5 per branch (ProxCell; Table 1). SBW L2 data from the
Gaspé-Bas St. Laurent, Québec region were incorporated in the proxi-
mity calculation, although only those L2 points within the northern
New Brunswick study area were used in the statistical analyses. In-
secticide spray history was included as a dummy variable, with four
numbers representing whether a sample point fell within the spray
blocks in the previous two years, in one of the two preceding years, or
none of two years. All spatial analyses were done using ArcMap 10.4
(ESRI, Redlands, CA, USA).

2.4. Variable importance analyses

With all 46 predictor variables included (Table 1), GBM analysis
(Ridgeway, 2007) was used to determine the most influential predictors
in forecasting the SBW L2 population, based on both raw sample points
and fishnet points. As a machine learning technique, gradient boosting
determines performance of decision trees using gradients in the loss
function in a sequential fashion (Friedman, 2001). GBM analysis reports

Fig. 1. Location of (a) the study area in northern New Brunswick and (b) distribution of annual SBW L2 populations in sample points within the study area and the
adjacent Gaspé-Bas St. Laurent, Québec, from 2013 to 2018.
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the relative influence of analyzed variables according to frequencies
that a variable was selected over all splits, weighted by the squared
improvement to the model in each split (Elith et al., 2008). The “caret”
package (Kuhn, 2008) within R version 3.4.3 (R Development Core
Team, 2018) was used for the GBM analysis. Correlation tests were also
done for all predictor variables, and highly correlated predictor vari-
ables (r ≥ 0.7) were avoided in the models. The generally most im-
portant uncorrelated variables (r < 0.7) across all years selected from
the GBM-resulted variable ranks and their interactions were used in
fitting models.

2.5. Spatial regression models

Simultaneous autoregressive (SAR) models (Wall, 2004) were im-
plemented to predict SBW L2 population levels each year from 2014 to
2018. SAR models assume that the response variable depends not only

on the predictor variables, but also the spatial neighborhood relation-
ships among all samples in the study area, which were implemented as
an ×n n weights matrix in the models (Haining, 2003). The specifica-
tion of the spatial weights usually starts from a binary neighbors list in
which objects are either listed as neighbors or are absent, then is further
weighted to give less-distant neighbors more weight (Hoef et al., 2018).
The weights matrix consists of zeros on the diagonal and weights for the
neighbors in the off-diagonal positions (Hoef et al., 2018). Based on
results of Kissling and Carl (2008), who compared SAR model perfor-
mance with 3240 different combinations of model settings, row-stan-
dardization (i.e., “W” coding style) was used to code the spatial weights
matrix in this study.

We fitted SAR models using only the L2 fishnet points because,
compared to the irregular distribution of L2 raw sample points, fishnet
sample points have a regular lattice of point sites, which guarantees
that all orders of neighborhood sizes remain the same for all samples.

Table 1
Predictor variables (abbreviations, units, and descriptions) included in Gradient Boosting Machine analysis to determine their relative importance in predicting L2
population in Year N.

Influencing factor Variable abbreviation Unit Variable description

Forest compositiona BF% % Weighted average of balsam fir proportion within 50 m buffer zone
SP% % Weighted average of spruce proportion within 50 m buffer zone
HW% % Weighted average of hardwood proportion within 50 m buffer zone

Climate conditionsb Temp_04 to _09 °C Monthly temperature (Apr. to Sept.)
Temp_av45 °C Average temperature in Apr. and May
Temp_av67 °C Average temperature in Jun. and Jul.
Temp_av89 °C Average temperature in Aug. and Sept.
Temp_av456 °C Average temperature in Apr. to Jun.
Temp_av789 °C Average temperature in Jul. to Sept.
DD_04 to _09 °C·d Cumulative degree days (> 5°C) (Apr. to Sept.)
DD_45 °C·d Cumulative degree days (> 5°C) in Apr. and May
DD_67 °C·d Cumulative degree days (> 5°C) in Jun. and Jul.
DD_89 °C·d Cumulative degree days (> 5°C) in Aug. and Sept.
DD_456 °C·d Cumulative degree days (> 5°C) in Apr. to Jun.
DD_789 °C·d Cumulative degree days (> 5°C) in Jul. to Sept.
Prcp_04 to _09 mm Monthly total precipitation (Apr. to Sept.)
Prcp_45 mm Total precipitation in Apr. and May
Prcp_67 mm Total precipitation in Jun. and Jul.
Prcp_89 mm Total precipitation in Aug. and Sept.
Prcp_456 mm Total precipitation in Apr. to Jun.
Prcp_789 mm Total precipitation in Jul. to Sept.

Proximity to high L2 population sites in the previous year ProxRaw km Distance to the nearest raw sample point with L2 > 6.5 per branch in Year
N-1

ProxGrid km Distance to the nearest fishnet point with L2 > 6.5 per branch in Year N-1
ProxCell km Distance to the nearest raster cell with L2 > 6.5 per branch in Year N-1

Topographyc DEM m Elevation
Slope ° Slope values
Aspect ° Aspect values

Site quality DTWc m Depth to water
BGId kg ha−1 yr−1 Biomass growth index

Previous local SBW populatione L2_PreYear per branch L2 population at certain sample sites in the preceding year
Spray treatment historyf TreatCode If the point falls in the spray treatment blocks

0: not treated either in Year N-1 or Year N-2
1: treated in Year N-1, not treated in Year N-2
2: treated in Year N-2, not treated in Year N-1
3: treated both in Year N-1 and Year N-2

a Forest data was obtained from New Brunswick Energy and Resource Development as a LandBase polygon layer. The shapefile was intersected with 50 m circular
buffer zones around each L2 fishnet point. Species composition was calculated as the weighted average of species proportion based on the area of intercepted
polygons.

b Climate data was generated by BioSIM11 (Régnière et al., 2014) which used four climate databases: Canadian Climate Normals database; New Brunswick Fire
Weather; New Brunswick Agriculture Weather; and Ministère du Développement Durable, de l’Environnement et de la Lutte contre les Changements Climatiques
(MDDELCC). Processes under BioSIM11 included enquiring daily weather data for New Brunswick, transforming daily data into monthly data, and generating climate
data for sample points by interpolation.

c Elevation and depth to water data were provided by Forest Watershed Research Centre at the University of New Brunswick (Murphy et al., 2007; Furze et al.,
2017), and were resampled into 20 m resolution for this study. Slope and aspect raster layers were generated from the elevation raster, and smoothed by focal
statistics with 3 × 3 cells as neighborhood.

d Biomass growth index was created by FORUS Research (Hennigar et al., 2017).
e Previous local SBW population was extracted from the Year N-1 interpolated L2 raster.
f Spray treatment shapefiles in the previous two years were provided as polygon layers by Early Intervention Strategy Research group. Whether a sample point was

previously treated or not was identified by intersecting the point with the treatment blocks in each year.
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This benefits the comparison between models across different years,
since in this case, a common neighborhood size can be used in different-
year SAR models. In addition, predicting regions with high L2 popu-
lations, instead of points with high L2 populations, has more guiding
value in insect sampling and management. Given that our fishnet points
were at 2 km intervals, we defined the upper neighbor boundary as
5 km to include eight adjacent neighbors, i.e., first order neighbors, for
each sample point, as advised by Kissling and Carl (2008). SAR models
take three forms: 1) lagged response model which assumes that the
autoregressive processes merely occurs in the response variable, 2)
lagged mixed model which assumes such processes occur in both re-
sponse and predictor variables, and 3) spatial error model which as-
sumes that the process only occurs in the error terms (Anselin, 1988).
We applied the second form, SARmix model, because the response
variable SBW L2 was likely to have both inherent spatial autocorrela-
tion (i.e., derived from interactions within the observed variable itself)
and induced spatial autocorrelation (i.e., the observed variable is
functionally dependent on an underlying variable which is auto-
correlated). SARmix models take the form (Anselin, 1988):

= + + +Y ρWY WXγ Xβ ε

where +Xβ ε are the standard terms in ordinary least squares (OLS)
regression: β is a vector representing the slopes associated with the
predictor-matrix X , and ε is a vector of the error terms. ρW is a term
describing spatial autocorrelation in the response variable vector Y ,
where ρ is the autoregression parameter, and W is the spatial weights
matrix.WXγ describes the regression coefficients γ of the spatially
lagged predictors WX . SAR models were implemented using the
“spdep” package (Bivand, 2006), and the R script used to fit SAR
models was derived from the appendix of Dormann et al. (2007). The
top predictor variables determined by GBM analysis and their interac-
tions were included in the full models, and then any non-significant
variables or interactions, assessed by t tests (α = 0.05), were dropped
in the reduced models.

Spatial dependence of SAR model residuals was investigated using
correlograms of Moran’s I and maps of residuals. Since parameters of
SAR models are estimated by the maximum likelihood method (Wall,
2004), the likelihood-based measure of goodness-of-fit, log likelihood,
was appropriate for SAR models (Lichstein et al., 2002; Tognelli and
Kelt, 2004). For the same reason, we used the Nagelkerke pseudo R2

(Nagelkerke, 1991), which is based on likelihood, instead of the tra-
ditional R2, to compare model performance. Nagelkerke pseudo R2 was
computed according to the formula (Nagelkerke, 1991):

= − − −R n l l1 exp[ 2/ ( )A
2

0

where lA is the log likelihood of the model to be tested, l0 is the log
likelihood of the null model that merely contains the intercept, and n is
the sample size.

In each year from 2014 to 2018, OLS models were fitted with the
same predictor variables and interactions to compare with the SARmix

models in terms of spatial dependence as well as overall model per-
formance. The Nagelkerke pseudo R2 formula above yields the identical
value as the traditional R2 for OLS models (Lichstein et al., 2002). All
correlograms in this study were created using functions in the “ncf”
package (Bjørnstad et al., 1999) with 500 permutations for each test.
Then the significance levels of the coefficient at each lag distance were
adjusted by progressive Bonferroni correction, where the Bonferroni-
corrected significance level was computed for each distance class se-
parately (Legendre and Legendre, 2012):

=a d a d( ) /' '

where a is the commonly used significance level, i.e., =a 0.05, d' is
the number of tests actually performed up to the specific distance class,
a' is the adjusted significance level, and d is the distance class of in-
terest.

Finally, we applied models forecasting the L2 population in Year N

to the datasets in the subsequent year using the “predict.sarlm” function
(Goulard et al., 2017) in the package “spdep” (Bivand, 2006). We also
carried out sensitivity analysis on each year’s model, by comparing the
predicted L2 population under different scenarios systematically
varying values of each of three predictor variables while controlling the
other two predictors unchanged, to test the degree that each predictor
variable influenced the response variable. The predicted fishnet point
values were then interpolated as raster layers using the IDW method,
and compared with the observed L2 population distributions.

2.6. Combined year model

To predict L2 population levels in the coming year using a gen-
eralized model formula, linear mixed effects (LME) models were fitted,
combining all years’ data with year as a random effect and maximum
likelihood as the parameter estimation using the “lme” function in the
package “nlme” (Lindstrom and Bates, 1988). The effects of spatial
autocorrelation were addressed using the “corr” argument in the model
settings. The L2 population data were log-transformed to stabilize the
variance and to improve normality of residuals. The full model was
fitted using the same predictors and their interactions used in the
SARmix models, with random intercepts and random slopes on all three
predictors. Then a reduced model was generated by dropping non-sig-
nificant variables and interactions, assessed by t tests (α = 0.05), with
fewer random components in slopes by comparing the full model and
the reduced models using likelihood ratio tests. Assumptions of residual
normality and homoscedasticity were evaluated using residual plots. To
be comparable to each year’s SARmix model, goodness-of-fit of the
combined-year (2015–2018) model was also evaluated by log like-
lihood and Nagelkerke pseudo R2. The reduced model was used to
predict L2 populations from 2015 to 2018, with only fixed effects in-
cluded, and compared with observed L2 population levels. L2 popula-
tions in 2019 were also predicted using the reduced combined-year
model.

3. Results

3.1. Relative influence of predictor variables

GBM tests showed that local previous-year SBW L2 population le-
vels, proximity to high population sites in the previous year, and cli-
mate conditions in spring (April or May) were the most important
variables to predict SBW L2 population levels from 2015 to 2018
(Fig. 2). Specifically, distance to the nearest fishnet point with
L2 > 6.5 per branch in the previous year was the most important
predictor in 2015 (relative influence = 41%), 2017 (30%), and 2018
tests (16%; Fig. 2b, d and e). Distance to the nearest raw sample point
with L2 > 6.5 per branch in the previous year, which was highly
correlated with the distance to the nearest fishnet point (r = 0.9), was
the most important predictor in 2016 (relative influence = 24%;
Fig. 2c). Local previous-year L2 population level was the second most
important variable in 2015 (relative influence = 8%) and 2016 (20%),
and third in 2017 (14%) and 2018 (10%; Fig. 2c–e). Cumulative degree
days in April ranked in the top five variables in all five years (Fig. 2). In
2014, results showed two other top predictor variables: monthly mean
temperature in May (11%) and biomass growth index (10%; Fig. 2a).
The L2 population was < 6.5 per branch for all sample points in New
Brunswick in 2013, so proximity to high SBW populations in 2014 was
entirely based on distances to populations in the Gaspé-Bas St. Laurent
region. There were no insecticide spray treatments carried out in 2012
or 2013, so this variable was not included in the 2014 analysis. How-
ever, insecticide treatment was not among the top five influencing
variables in any years.

To generalize the model over the years into a form that could be
used for multi-year prediction, we used the variables local L2 popula-
tion in the previous year, distance to the nearest fishnet point with
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L2 > 6.5 per branch in the previous year, and cumulative degree days
in April and their interactions to fit the 2015–2018 models, predicting
L2 population over the 4 years. Fig. 3 shows the trends of these three
predictor variables from 2015 to 2019. Cumulative degree days in April

consistently increased from 2015 to 2018, but decreased in 2019
(Fig. 3a); 2015 and 2019 had noticeably cold springs. Previous-year L2
population levels (L2_PreYear) increased from 2015 to 2018 (Fig. 3b).
With the L2 population expansion (Fig. 3b), there was increasing area

Fig. 2. Relative influence (%) of the five most important predictor variables based on Gradient Boosting Machine analysis to predict SBW L2 population each year
from 2014 to 2018 (a–e). Predictor variable abbreviations are described in Table 1, and predictors with the same superscripts were highly and positively correlated
with each other (correlation coefficient r ≥ 0.7).

Fig. 3. Maps of (a) cumulative degree days in April (°C·d), (b) previous local SBW L2 population (per branch), and (c) proximity to L2 > 6.5 per branch sites in the
previous year (km) from 2015 to 2019. These three variables were generally the most important predictors and were used in the modeling process.
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with low proximity values (0–20 km to the nearest fishnet point with
L2 > 6.5 per branch) from 2015 to 2018 (Fig. 3c). For the 2014 model,
we used cumulative degree days in April, monthly mean temperature in
May, biomass growth index, and their interactions to predict L2 po-
pulation levels.

3.2. Performance of spatial regression models and combined-year
(2015–2018) LME models compared to OLS models

Over the 5 study years, SARmix models explained 68% to 79% of the
variance in the SBW L2 populations, whereas OLS models explained
only 6% to 35% of the variance (Table 2). SARmix models had higher log
likelihood ratios than OLS models in each year, representing a better fit
of the data by SARmix models (Table 2). The predictor cumulative de-
gree days in April (DD_04) was non-significant in the 2015–2017
models (α= 0.05), while the interaction term of DD_04 and L2_PreYear
was significant in years 2015, 2016, and 2018 (α = 0.05). Moreover,
OLS residuals showed positive spatial autocorrelation up to a distance
of 100 km, with the Moran’s I ranging from 0 to about 0.6 over the
5 years (Fig. 4a), providing evidence that the assumption of in-
dependently distributed residuals was violated. OLS residuals were
spatially clustered across all years, with clumps of positive residuals
and negative residuals (Fig. 4b). L2 population level, the response
variable, was also spatially autocorrelated up to a distance of 100 km
across the years, suggesting that the spatially-correlated L2 population
was one of the possible causes of the spatial-correlated residuals at
roughly the same spatial scale (Fig. 4a). However, in contrast to OLS
models, correlograms and maps of SARmix model residuals showed very
low spatial autocorrelation: Moran’s I was< 0.05 for all tested lag-
distances in all study years (Fig. 4a), and much less spatial hetero-
geneity was exhibited (Fig. 4c). Being able to address the spatial au-
tocorrelation in model residuals indicated the suitability of SARmix

models for the ecological data analyzed in this study.
To aggregate multiple years’ data and generate a generalized model

form, the LME model was fit combining 2015–2018 data. Data in 2014
were excluded when fitting the 2015–2018 combined-year LME model
because the top predictors for 2014 data differed from those for
2015–2018 data according to GBM tests (Fig. 2). The predictor variable
L2 in the previous year, and interaction terms of it with cumulative
degree days in April and distance to the nearest fishnet point with
L2 > 6.5 per branch in the preceding year were kept in the reduced
LME model, which explained 53% of the variance in SBW L2 population
levels, versus only 22% of variance explained by the OLS model
(Table 2). The log likelihood ratio of the LME model was also higher
than the OLS model, suggesting a better goodness-of-fit (Table 2).

3.3. Relationships of SBW L2 population levels to top predictor variables

We used sensitivity analyses to systematically vary values of the
three predictor variables and determine the influence on predicted SBW
L2 populations. Higher L2 population forecasts were associated with
lower degree days in 2016 and 2017 (Fig. 5a), during which years the
observed values of DD_04 averaged 21.2 °C·d and 23.3 °C·d, respec-
tively. In 2016, the observed DD_04 −20 °C·d and −10 °C·d scenarios
averaged 5.2 and 2.7 L2 per branch increases, while +10 °C·d
and +20 °C·d scenarios averaged 1.1–1.3 L2 per branch decreases
(Fig. 5a). In 2017, scenarios of the observed DD_04 −20 °C·d and
−10 °C·d, and +10 and +20 °C·d averaged 1.8 and 1.0 L2 per branch
increases, and 0.6 and 1.1 L2 per branch decreases, respectively
(Fig. 5a). In 2015, a year with a much cooler spring (

−

x = 9.1 °C·d),
predicted L2 populations were more sensitive to increases in L2_PreYear
than to DD_04 (Fig. 5a and b).

Sensitivity analyses of L2 in the previous year indicated that loca-
tions with higher L2 in Year N-1 had more L2 in Year N, although the
effect was reduced in 2017 and even lower in 2018 (Fig. 5b). Because
L2 in the previous year was set to zero in the sensitivity analyses when
varying the observed L2 by −5 or −10 produced a negative value,
many values were zeros in the sensitivity tests. Hence, sensitivity was
mostly reflected in the original L2_PreYear +5 or +10 cases; system-
atically increased L2_PreYear of five larvae per branch averaged 9.8 L2
per branch increases in 2015 L2 forecasts, 12.1 in 2016, 2.1 in 2017,
and 0.1 in 2018 (Fig. 5b). Systematically increased L2_PreYear of 10
larvae per branch averaged 19.5, 24.1, 4.1, and 0.2 per branch in-
creases in L2 forecasts in 2015, 2016, 2017, and 2018, respectively
(Fig. 5b).

In 2015, 2017, and 2018, locations closer to high L2 sites in Year N-
1, i.e. with lower values of ProxGrid, were generally associated with
higher predicted L2 population in Year N (Fig. 5c). Systematically in-
creasing ProxGrid by 40 km resulted in decreases of 0.05, 1.0, and 0.2
L2 per branch in 2015, 2017, and 2018, respectively whereas in 2016,
increasing ProxGrid by +20 and +40 km led to small increases, by
0.08–0.13 L2 per branch. A 40 km decrease in ProxGrid contributed to
at most an average of 1.2 L2 per branch increase. Predicted L2 popu-
lations in 2018 showed less sensitivity to all three predictor variables,
probably because of the relatively low and evenly-distributed L2 values
observed (

−

x = 0.3, σ = 0.7; Fig. 1b).

3.4. Comparison of observed and predicted SBW L2 populations

Generally, the Year N SARmix models and combined-year LME
model underestimated SBW L2 population levels in Year N, especially at
high population levels, from 2015 to 2018. The Year N-1 SARmix models

Table 2
Nagelkerke pseudo R2 and log likelihood of L2 population predictions by ordinary least squares (OLS) and simultaneous autoregressive mixed (SARmix) models over
the years from 2014 to 2018, and by the combined linear mixed effects (LME) model from 2015 to 2018. Predictor variable abbreviations are described in Table 1.

Year Regression type predictorsa Nagelkerke pseudo R2 b Log likelihood

2014 SARmix DD_04+Temp_05+BGI 0.75 −1342
OLS 0.06 −5676

2015 SARmix L2_PreYear+ProxGrid+DD_04* L2_PreYear 0.72 −8648
OLS 0.29 −12965

2016 SARmix L2_PreYear+ProxGrid+DD_04* L2_PreYear+L2_PreYear* ProxGrid 0.79 −13528
OLS 0.35 −18802

2017 SARmix L2_PreYear+ProxGrid+DD_04* ProxGrid 0.77 −15367
OLS 0.35 −20063

2018 SARmix DD_04+L2_PreYear+DD_04* L2_PreYear+DD_04* ProxGrid+L2_PreYear* ProxGrid 0.68 −3916
OLS 0.14 −8437

2015–2018 LME L2_PreYear+DD_04* L2_PreYear+L2_PreYear* ProxGrid 0.53 −13858
OLS 0.22 −17833

a Only significant variables and interactions were kept in the reduced models (p < 0.05).
b For OLS models, Nagelkerke pseudo R2 yields the identical value as the traditional R2, i.e., the proportion of the variance for a dependent variable explained by

independent variables.
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were more accurate in predicting Year N L2 populations than the
combined-year (2015–2018) LME model, which had a greater bias in L2
population forecasts. In comparison with the observed SBW L2 popu-
lation distribution (Fig. 6a), areas with moderate or higher levels of L2
population (L2 > 6.5 per branch) were underestimated by Year N
SARmix models by 14,620 (72%), 8140 (7%), 15,470 (11%), and
2750 ha (100%) less than the observed area from 2015 to 2018, re-
spectively (Fig. 6b). In 2015 and 2016, areas with moderate or higher
levels of L2 population were underestimated by Year N-1 SARmix

models by 18,856 ha in 2016, and no area with L2 > 6.5 per branch
was predicted in 2015 (the SARmix model in 2014 used different pre-
dictor variables from the other three years; Table 2, Fig. 6a and c).
However, area with moderate or higher levels of L2 populations were
substantially overestimated, by 510,382 and 29,278 ha, by Year N-1
SARmix models in 2017 and 2018 (Fig. 6a and c).

The combined-year (2015–2018) LME model did a poor job of
predicting moderate or higher L2 populations in any of the sample years
(Fig. 6d). All areas (3,730,000 ha) were predicted to have SBW L2
populations< 6.5 per branch in 2015 and 2016 by the combined-year
(2015–2018) LME model, whereas actual observed areas were
20,191 ha and 122,738 ha, respectively. The area with moderate or
higher L2 population was predicted to be 138,560 ha less than observed
in 2017 and 568 ha more than the observed area in 2018 (Fig. 6a and
d), and in 2018 the predicted location differed from the actual. We used
both the 2015–2018 combined-year LME model and the annual
2015–2018 SARmix models to predict moderate or higher SBW L2 po-
pulations in 2019 (Fig. 6d and e). Except for the 2016 SARmix model
(which hugely overestimated area with L2 > 6.5 per branch at
450,000 ha), the area of moderate or higher L2 populations predicted
for 2019 was low, 0–256 ha, because input values of the predictor
variable L2_PreYear, i.e., L2 populations in 2018, were almost all at the

nil or trace level.

4. Discussion

4.1. Forecasts of SBW population levels in the coming year

For predicting SBW L2 population levels in the following year, local
previous-year insect population was the most important variable.
Locations with higher SBW L2 populations, located closer to high po-
pulation sites, had higher predicted L2 levels in the subsequent year.
Sensitivity analyses showed that increasing the L2 population by five to
ten per branch at a site in a given year would result in the L2 population
at that site in the subsequent year increasing by 12 to 24 per branch.
Being 40 km closer to or further from locations with > 6.5 L2 per
branch resulted in only having 1 more or 1 less L2 per branch in the
next year. Rising populations due to large-scale pulses of resource or
important variables in a given year would potentially remain at the
same level over the following years, which can contribute to an out-
break initiation (Bouchard et al., 2018). SBW populations in our study
area experienced over 90% reductions unexpectedly in 2018, the reason
for the decline is currently unknown, although study is continuing, and
it may well represent a temporary annual reduction in an increasing
population trend (MacLean et al., 2019). The quantified relationships
found, however, were not consistent across years. Thus, a model fit in
Year N-2 could not be used to reliably predict L2 populations in Year N.
Moreover, populations in Year N predicted by the Year N-1 SARmix

models were generally more accurate than the population predicted by
the combined-year (2015–2018) LME model, which consistently un-
derestimated L2 populations. The effect of cumulative degree days in
April in the predicted year models may help to characterize the upper
and lower population bounds when forecasting the SBW population.

Fig. 4. Spatial autocorrelation of SBW L2 population and model residuals of ordinary least squares (OLS) models and simultaneous autoregressive mixed (SARmix)
models over 5 years from 2014 to 2018, shown by (a) correlograms, where solid black symbols indicate significant coefficients after progressive Bonferroni cor-
rections (α = 0.05, 500 permutations), and spatial error maps of (b) OLS models and (c) SARmix models, where red area indicates positive residuals and blue area
indicates negative residuals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.2. Effects of environmental variables on outbreak initiation

Early spring climate conditions were generally the most important
influencing environmental variable analyzed. Overall, northern New
Brunswick experienced increasingly warm springs from 2015 to 2018,
the years when observed L2 populations increased. Spring temperatures
(April degree days) in 2015 and 2019 were cool. Warmer climate
conditions lead to a better phenological match between the larvae
emerging from overwintering and the young developing foliage
(Bouchard et al., 2018), and this results in lower larval starvation, less
need to disperse, and lower larval mortality (Miller, 1958). A cooler

April, typically colder than about 15 °C, can potentially lead to late L2
emergence from hibernacula with longer duration remaining as L2
before reaching the third instar (Rose and Blais, 1954).

However, our sensitivity analyses showed that higher L2 popula-
tions were associated with lower early spring degree days in 2016 and
2017, which conflicted with the broad-scale climate conditions effect,
i.e., that warm springs associated with SBW population increase at the
broad scale. Nonetheless, our study suggested that effects of spring
degree days on L2 population differed for different previous-year out-
break conditions, including local population and proximity to high
population locations, as suggested by the statistically significant

Fig. 5. Sensitivity analyses of SBW L2 population (per branch) predicted by simultaneous autoregressive mixed models from 2015 to 2018 under three scenarios: (a)
original values of cumulative degree days in April compared to original values −20, −10, +10, and +20 °C·d, (b) original values of previous local L2 population
compared to original values −10, −5, +5, and +10 per branch, and (c) original values of proximity to L2 > 6.5 per branch sites in the previous year compared to
original values −40, −20, +20, and +40 km. Previous local L2 population and proximity with values < 0 in (b) and (c) were set to zero before prediction.
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interaction terms. In other words, effects of spring degree days on L2
population depended on the degree to which previous-year outbreak
conditions have influenced L2 population.

However, the findings about early spring climate in this study may
not apply to other regions or different SBW outbreak phases. The cur-
rent SBW outbreak onset in New Brunswick expanded from the north,
where the climate is relatively colder. Previous SBW outbreaks in New
Brunswick beginning in 1912 and 1949 tended to occur several years
after outbreaks occurred in adjacent Québec, and the role of moth
dispersal was believed to be important (Greenbank, 1957). In our case,
because of the lack of moth dispersal data, the possible effect of moth
dispersal from the current SBW epidemic in Québec was incorporated
by including proximity to high L2 population sites in both Québec and
the northern New Brunswick study area. If detailed spatial data on SBW
moth dispersal were available, from radar monitoring (Boulanger et al.,
2017) or modeling (Régnière et al., 2019), it might well supersede ef-
fects of spring temperature.

Some previous studies also found negative relationships between
spring climate and SBW outbreak conditions: locations that experienced
cooler springs had higher defoliation frequencies from 1967 to 1998 in
Ontario, and longer outbreak duration and higher severity from 1961 to
1990 in Québec (Candau and Fleming, 2005; Gray, 2013). The lower

frequencies of defoliation with warm spring temperatures (Candau and
Fleming, 2005) were thought to be caused by early emerged larvae
suffering from heavy mortality later due to the exposure to late frosts
and a frozen-ground-caused phenological mismatch.

Extreme cold winter temperature, typically below −40 °C, can
cause mortality of overwintering L2 (Blais, 1958). We evaluated this
possible effect, but meteorological data showed that very few of the
sample points in our study area experienced this low threshold tem-
perature in winter during the study years.

Although forest composition has also been viewed as an important
variable influencing SBW survival by affecting the diversity and po-
pulations of SBW parasitoids (Zhang et al., 2018), or the phenological
matches between host trees and the insects (Nealis and Régnière, 2004),
species composition did not appear as an important variable influencing
SBW population in this study. This may have been because the L2 data
used were collected from branches from each of three balsam fir or
spruce trees, and the fishnet L2 data was interpolated, with the re-
sulting values highly dependent on distances to surrounding raw L2
points. In addition, effects of forest composition might be detected at a
different scale by using different neighborhood sizes.

Topography and site quality did not show any clear influences on
SBW population during this analysis. Effects of insecticide spray

Fig. 6. Comparison of (a) observed L2 population spatial distribution, and the forecast spatial distribution, i.e., interpolated raster from L2 population point of (b)
fitted values from Year N simultaneous autoregressive mixed models, (c) predicted values from Year N-1 simultaneous autoregressive mixed models, (d) predicted
values from a combined-year (2015–2018) linear mixed effect model, and (e) 2019 L2 population predictions using annual Year N simultaneous autoregressive mixed
models from 2015 to 2018. Areas (ha) with L2 > 6.5 per branch were estimated based on raster cells.
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treatments also were not significant in our analysis. This was surprising
because insecticide treatments have effectively reduced SBW within
treated blocks in the study area (MacLean et al., 2019). The lack of
stronger overall effects may have occurred because nearly all SBW
populations > 6.5 L2 per branch in the study area were treated in
insecticide spray blocks in the EIS project, so that there was effectively
no control for comparison. When other factors were controlled, SBW
populations within treated blocks were consistently reduced (MacLean
et al., 2019). Because of this inherent confounding issue of ‘always treat
high L2′, spray treatment may be more of a background effect (factor)
that becomes a condition of the model (the model assumes protection
will always be applied in a similar way each year). The study did not
have an effective design to examine effects of treatment. Furthermore,
this result may have been influenced by the relatively small area treated
with insecticide spraying (which from 2015 to 2018 increased from
15,000 ha to 56,000 ha, 147,000 ha, to 199,000 ha per year), relative to
the overall study area size of 3.7 million ha. We analyzed various spray
treatment (or not) combinations in years N-1 and N-2, and also tried
only year N-1 spray treatment effects, but neither had important effects
on overall population trends.

4.3. Regression analysis of spatial population data

Better performance and less spatial autocorrelation in residuals
demonstrated the suitability of SAR models compared to classic OLS
models for analyzing these ecological data. These results suggest that
modeling forest insect population dynamics should account for spatial
structures in both target-insect distribution and underlying environ-
mental factors. Given the spatial dynamics and periodicity of defoliator
systems, it is essential to carry out outbreak phase-dependent analyses
and to be careful about the study scale selection. There are many dif-
ferent statistical approaches to studies of spatial ecological data, de-
pending on study objectives, data characteristics, sample sizes, model
types, and sources of spatial autocorrelation (Dormann et al., 2007;
Beale et al., 2010). Performance of different spatial models has been
estimated and compared in several studies, which provide evidence of
model application in different conditions (e.g., Dormann et al., 2007;
Kissling and Carl, 2008; Bini et al., 2009; Beale et al., 2010).

4.4. Applications of the study results

The onset of the current SBW outbreak from 2015 (first forecast of
defoliation by NBERD) to 2018 in New Brunswick gave us a good op-
portunity to explore possible factors influencing the initiation of SBW
outbreaks, and to determine which variables contribute to population
increases. Understanding the relationships among variables, and pos-
sible mechanisms, can help forest and pest managers to forecast future
insect outbreak situations and make better management decisions.
Identifying subsequent-year high SBW population areas can focus and
reduce the sampling effort required to accurately estimate regional L2
density. In theory, rather than having a consistent sample of L2 points,
it would be more efficient to stratify sampling intensity by likelihood of
upcoming year L2 populations predicted to exceed the EIS treatment
threshold of 6.5 L2 per branch. Additionally, our results suggested that
previous-year outbreak conditions were most important in determining
current-year SBW population levels. Therefore, applying insecticides on
those outbreak “hot spots” in the preceding year to prevent further
growth of local SBW populations is advisable, which corresponds to the
current strategy used by the EIS project (MacLean et al., 2019). At-
tention to such temporal correlation of populations should be given
when defining management strategies for other insect pests with similar
population dynamics or mobility as SBW. However, factors influencing
insect outbreaks are phase-dependent (e.g., Bouchard and Auger,
2014), and relationships between factors determined during outbreak
initiation can differ during the development or collapse phases of an
outbreak.

5. Conclusions

Using spatial regression models, we determined the variables that
influenced increases of SBW populations in northern New Brunswick
from 2014 to 2018. Variables important in determining upcoming year
SBW L2 population were previous year local L2 population, proximity
to high L2 population locations, and early spring degree days. However,
the relationships quantified were inconsistent across years, so a model
fit in a given year may not be applicable to predict L2 populations two
or more years afterwards. Also, variables that are important during
outbreak initiation may weaken or vary in spread and collapse phases
of the outbreak. The combined-year (2015–2018) LME model per-
formed the worst and underestimated L2 populations in forecasts. Other
variables including forest species composition, topography, site quality,
and insecticide spray history were not important. High SBW L2 popu-
lations tended to be at locations closer to or at the sites where the
previous year local SBW population was high. The current SBW out-
break in New Brunswick expanded from the north, adjacent Gaspé-Bas
St. Laurent region of Québec, and our results mathematically describe
the expansion and retraction of the current SBW outbreak over the
initial 5 years. Our results help determine which variables influenced
SBW outbreak initiation and relationships between the SBW population
and other influencing variables, and also demonstrate the suitability of
spatial regression models for analysis of ecological data.
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